

Точение, сверление, резьбонарезание, фрезерование

Каталог новой продукции Издание 2020-2

_ РЕШЕНИЯ, ОТКРЫВАЮЩИЕ НОВЫЕ ВОЗМОЖНОСТИ

Каталог новой продукции

Как найти и заказать необходимый стандартный инструмент

Лично, обратившись к региональному представителю

С нами можно связаться по телефону, факсу или электронной почте. Контактные данные представительства см. на нашем сайте: walter-tools.com.

В Общем каталоге Walter 2017

представлена вся стандартная программа инструментов торговых марок Walter, Walter Titex и Walter Prototyp. Он регулярно дополняется каталогами новой продукции в самой актуальной редакции.

Теперь любые инструменты Walter можно быстро и удобно заказывать в режиме онлайн на сайте walter-tools.com — с помощью смартфона, планшета или ПК. Преимущество: прямой доступ к нашему корпоративному сайту в оптимизированном виде с любого мобильного устройства в любое время!

Онлайн-каталог Walter

Поиск по инструменту

В онлайн-каталоге Walter вы легко найдёте необходимые инструменты благодаря хорошо знакомой вам структуре нашего печатного каталога, а также специальным фильтрам и опциям поиска. Кроме того, вы сможете воспользоваться функцией «Добавить в корзину» и ссылками на чертежи и модели.

Walter GPS

Поиск по области применения

С помощью Walter GPS вы за несколько кликов найдёте оптимальное решение для обработки своих деталей — как онлайн, так и офлайн — и при необходимости сможете сразу добавить его в Walter TOOLSHOP!

Walter e-Library

Поиск по каталогам и брошюрам

Воспользовавшись приложением Walter e-Library, вы в считаные секунды получите на своё мобильное устройство любую необходимую информацию, например, наши брошюры и каталоги в онлайн- и офлайн-версиях на 17 языках.

Цифровые способы заказа

Walter TOOLSHOP и EDI

Walter TOOLSHOP предоставляет заказчикам возможность быстрого получения информации и заказа инструментов. С помощью системы электронного обмена данными EDI вы сможете пересылать необходимые документы (например, заказы) и размещать заказы на специальные инструменты.

Новая продукция Walter

Содержание

		СТР
Технологии Walter		2
А — Токарная обработка		5
	Токарная обработка ISO — A1	6
	Обработка канавок — А2	44
	Резьбонарезание — АЗ	68
	Техническая информация — А1–А3	70
В — Обработка отверстий		85
	Сверление — В1	86
	Техническая информация — B1	112
	Черновое и чистовое растачивание — В2	119
В — Обработка резьбы		123
	Нарезание резьбы — ВЗ	124
	Раскатывание резьбы — В4	127
	Резьбофрезерование — В5	136
	Техническая информация — В3–В5	154
С — Фрезерование		161
	Фрезы твердосплавные — С1	162
	Техническая информация — C1	176
	Фрезы с пластинами — С2	184
	Техническая информация — C2	236
D — Инструментальная оснастка		245
	Оснастка для неподвижного инструмента — D1	246
	Оснастка для вращающегося инструмента — D2	254

Технологии Walter

(((Accure-tec

Расточные оправки и адаптеры для фрезерования с запатентованной технологией Walter Accure-tec обеспечивают максимальную степень гашения вибраций. Это идеальный выбор для точения, фрезерования и обработки отверстий с большим вылетом инструмента.

Tiger-tec[®]Gold

Tiger·tec® Gold — это новый сплав и новая технология нанесения уникальных покрытий на пластины, разработанная Walter. Он обеспечивает максимальную стойкость и эксплуатационную надёжность. Этот сплав изготавливается инновационным способом с использованием ультранизкого давления (ULP-CVD). Специальный слой из нитрида алюминия-титана делает этот сплав исключительно стойким к абразии, термотрещинам, окислению и пластической деформации. Жаропрочный PVD-сплав с многослойным покрытием из оксида алюминия оптимально подходит для сложных условий обработки.

Tiger-tec®Silver

Tiger·tec® Silver от Walter — это уникальная во всём мире технология покрытия пластин. Специальный слой оксида алюминия с оптимизированной микроструктурой уменьшает износ при точении, фрезеровании и сверлении, повышает прочность и теплостойкость, что позволяет использовать значительно более высокие режимы резания.

Walter BLAXX

Walter BLAXX является эталоном нового поколения фрез. Специальная обработка поверхности корпуса делает фрезы исключительно прочными. Эти фрезы, преимущественно с тангенциальным креплением пластин, оснащены пластинами Tiger·tec®. Инструменты с обозначением «Walter BLAXX» сочетают в себе высокую износостойкость и непревзойдённую производительность.

Xtra-tec®

Фрезы и свёрла Xtra·tec® со сменными пластинами обеспечивают очень мягкое резание и великолепное качество поверхности при обработке любых материалов. Пластины с острыми режущими кромками и покрытием Tiger·tec® отличаются особенно благоприятным соотношением твёрдости и прочности. Для максимальной производительности и эксплуатационной надёжности.

Walter Nexxt

Engineering Kompetenz и компетентность в области цифровых технологий в компании Walter идут рука об руку. Вместе с нашей дочерней компанией Comara, специализирующейся на разработке программного обеспечения, мы разрабатываем цифровые решения, которые позволяют объединять станки и инструменты в одну большую и эффективно функционирующую сеть, а также оптимизируем их производительность на основании данных, получаемых в режиме реального времени. Цифровые технологии Walter для решений в сфере Индустрии 4.0 — Walter Nexxt.

Xtra-tec® XT

Xtra·tec® XT — новейшее поколение фрез Walter. Основываясь на продвинутой («Xtended») технологии, инструменты Xtra·tec® устанавливают абсолютно новые стандарты производительности и эксплуатационной надёжности. Подходят для любых операций фрезерования при обработке всех стандартных групп материалов: они прочнее, производительнее и экономически эффективнее, чем прежде, а Walter Green полностью компенсирует их «углеродный след».

Технология XD

Твердосплавные свёрла Walter Titex — это точные, высокопроизводительные и эффективные инструменты для обработки любых материалов. Технология XD от Walter Titex обеспечивает сверление глубоких отверстий до $70 \times D_c$ с высочайшей точностью и эффективностью.

Walter Xpress — это сервис быстрого заказа и доставки высококачественных специальных инструментов от Walter Multiply: доступно около $10\,000$ вариантов инструментов; срок поставки — не более 2-4 недель с момента поступления заказа! Процесс оформления заказа чётко структурирован и гарантирует абсолютную надёжность при планировании. Обработка всех заказов с расчётом цены выполняется в течение 24 часов.

Walter Green: экологичность производства и ответственное обращение с ресурсами являются основными приоритетами нашей компании. Концепция Walter Green наглядно демонстрирует, как мы работаем в этом направлении, например компенсируя выброс CO_2 при реализации природоохранных проектов.

Walter Capto $^{\text{тм}}$ — модульная система базовых держателей, предназначенная для любых работ по точению, фрезерованию, сверлению и резьбонарезанию. Её стандартизированный по ISO многоугольный конус оптимально воспринимает скручивающие и изгибающие моменты, обеспечивая высокую точность позиционирования.

Walter ConeFit — это серия универсальных твердосплавных фрез с широким спектром высокопроизводительных режущих головок и хвостовиков. Коническая резьба у инструментов этой серии является самоцентрирующейся, что гарантирует максимальную прочность и минимальное радиальное биение.

Пользователи Walter ScrewFit по достоинству оценят максимальную гибкость их применения. Модульная система крепления подходит для различных державок, а также для инструментов разного диаметра и длины, предназначенных для фрезерования и сверления.

Антивибрационные расточные оправки с технологией Walter Accure-tec для точения и резьбонарезание имеют отшлифованный с высокой точностью хвостовик QuadFit с базированием по торцу и конусу. Режущая головка с возможностью разворота на 180° обеспечивает быструю замену инструмента с высочайшей точностью позиционирования.

Направленная подача СОЖ от Walter обеспечивает эффективное охлаждение в самом центре формирования стружки. Двухканальная система гарантирует точность внутреннего подвода СОЖ к задней и передней поверхностям. Для значительного увеличения стойкости, оптимизации стружколомания и повышения эффективности в ходе токарной обработки и проточки канавок.

Символ молнии «Flash» служит для обозначения специальных твердосплавных быстроходных фрез. Их торцевая геометрия позволяет уменьшать толщину стружки «h» и тем самым достигать очень высоких значений подачи на зуб. Силы направляются по оси к центру инструмента, в результате чего стабилизируется процесс обработки.

У токарных державок Walter с обозначением SmartLock зажимной винт доступен сбоку, что гарантирует быструю и простую замену пластин в станке. Благодаря этому заметно сокращаются потери времени на замену. Предпочтительно для использования на станках фасоннопродольного точения и многошпиндельных станках.

Токарная обработка ISO — A1

Резьбонарезание

—————————————————————————————————————	Обзор программы пластин ISO	6
	Система обозначений для пластин ISO	10
	Пластины ISO без задних углов	12
	Пластины ISO с задними углами	16
	Пластины для системы профильной обработки	19
	Пластины ISO — CBN / PCD / керамика	20
Токарные державки Walter Turn для наружной обработки	Обзор программы	23
	Токарные державки с хвостовиком прямоугольного сечения— Система профильной обработки WL	24
Токарные державки Walter Turn для внутренней обработки	Обзор программы	28
	Втулки для расточных державок	30
	Антивибрационные оправки	31
	Режущая головка QuadFit — крепление пластин прижимом повышенной жёсткости	35
	Режущая головка QuadFit — крепление винтом	38
Обработка канавок — А2		
Режущие пластины	Обзор программы	44
	Режущие пластины DX	45
	Режущие пластины GX	48
— Державки Walter Cut для обработки торцевых канавок	Обзор программы	49
	Система обозначений — Walter Cut	50
	Державки	52
	Отрезные лезвия	63
Резьбонарезание — АЗ		
Державки Walter NTS для резьбонарезания	Обзор программы	68
	Режущая головка QuadFit для внутренней резьбы	69
Техническая информация — A1–A3		
	Обзор геометрий	70
	Рекомендации по применению	72
Обработка канавок	Обзор геометрий	76
	Инструкция по сборке Walter Cut DX	78

Рекомендации по применению

.

79

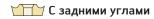
Обзор программы пластин и сплавов: токарная обработка ISO — твёрдый сплав

Пластины

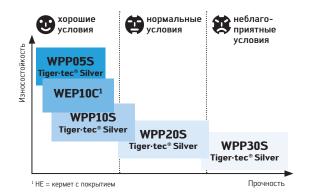
Форма пл	астины	Описание	Стр.
		Без задних углов	12
	Wiper C	С задними углами 7°	16
		С задними углами 11°	16
		Без задних углов	13
	<u>Wiper</u>	С задними углами 7°	17
	T	Без задних углов	14
V	<u>Wiper</u>	С задними углами 7°	17
	v	С задними углами 5°/7°	18
	Wiper W	Без задних углов	15

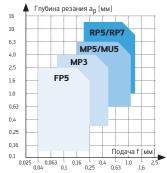
Форма пластины	Описание	Стр.
WL	Пластины WL для профильной обработки, с 3 режущими кромками	19

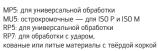
Сплав: твёрдый сплав


		Область применения										
Группа материалов	Покрытие	C	01 0	1		2 5	0 2	3 5	0 a	4 5	0 	45
а.гориалов	CVD	14	/PP01		1	5		.5	3	13		10
												\vdash
	CVD		WPP	055								_
	PVD*			WEP								<u> </u>
ISO P	CVD			WPP	105							
	CVD					WPP	205					
	CVD						WMF	205				
	CVD							WPP	305	_		
	CVD								WKF	2305		
	PVD	WS	M01									Π
	PVD			WSN	1105							
	CVD					WMF	205					T
ISO M	PVD						1205					T
	PVD					WSI						T
	PVD							WSN	1305			
	CVD			WKK	(105							T
ISO K	CVD					WKK	205					T
	CVD							WKF	305			T
	PVD			WNI	N10							\top
ISO N	_			WI								
	PVD	WS	M01									\top
	PVD			WSM	1105							\top
	-			WS	510							\top
ISO S	PVD					WSN	1205					\top
	PVD					WSI	M21					\top
	PVD							WSM	1305			Т
					И:	знос	осто	йкос	ТЬ			
		Прочность										
*Кермет		_										<u> </u>

^{*} Кермет



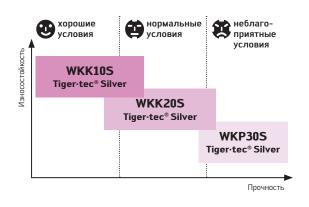

Обзор программы пластин для токарной обработки ISO: сплавы и геометрии Tiger·tec® Silver

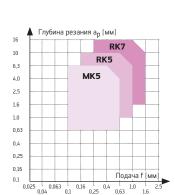

Без задних углов

Обработка стали ISO Р

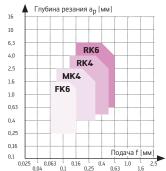
<u>Wiper</u>

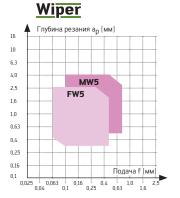
FW5


16 10 6.3 4,0 2.5


1,0 0,63 0,4 0,25 0,16

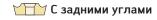
МР4: для универсальной и профильной обработки FP6: для получистовой обработки * Шлифованные по периметру

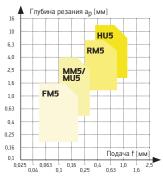

Обработка чугуна ISO K



0,063 0,16 0,4 1,0 0,04 0,1 0,25 0,63

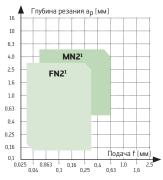
Подача f [мм]





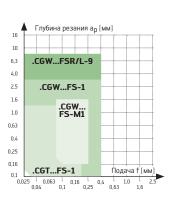
Нержавеющая сталь ISO M

Без задних углов


ММ4: для универсальной и профильной обработки FM6: для получистовой обработки 1 Шлифованные по периферии

Wiper Глубина резания ар [мм] 16 10 6.3 4.0 2.5 1.6 1.0 0.63 0.4 0.25 0.16 0.0 0.04 0.1 0.05 0.04 0.1 0.25 0.063 0.4 0.1 0.25 0.063 0.4 0.1 0.25 0.063 0.4 0.1 0.25 0.063 0.4 0.1 0.25 0.063 0.4 0.1 0.25 0.063 0.4 0.1 0.25 0.1 0.05 0.04 0.1 0.25 0.1 0.05 0.04 0.1 0.25 0.063 0.04 0.1 0.25 0.063 0.04 0.1 0.025 0.063 0.04 0.1 0.05 0.063

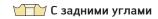
Цветные металлы ISO N

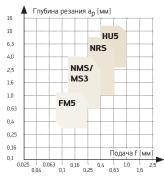


С задними углами Твёрдый сплав

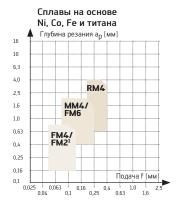
¹ Шлифованные по периферии

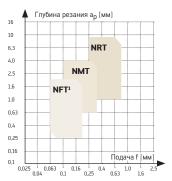
С задними углами PCD

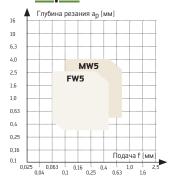



Жаропрочные и титановые сплавы ISO S




Без задних углов

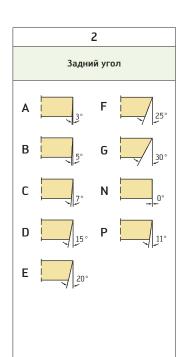



ММ4: для универсальной и профильной обработки FM6: для получистовой обработки 1 Шлифованные по периферии

Сплавы на основе титана

¹ Шлифованные по периферии

Wiper


Система обозначений токарных пластин по ISO 1832

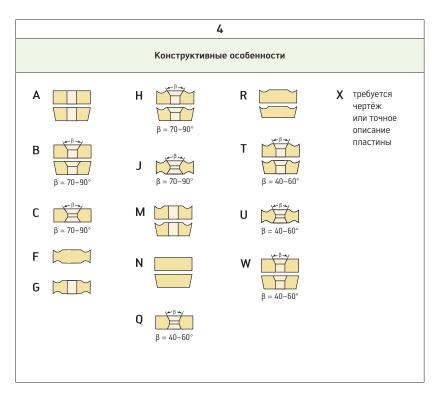
Пример 1:

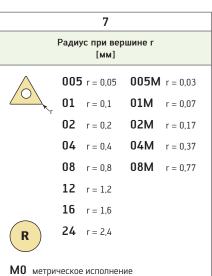
C	N	M	G	12	04	08M
1	2	3	4	5	6	7

_	M	P	5
	12	13	14

	1								
Форма пластины									
Α	85°	М	86°						
В	82°	0							
С	80°	Р							
D	55°	R							
Ε	75°	S	90°						
Н		T	60°						
K	55°/	٧	35°						
L		W	80°						

3									
Класс точности									
Предельное отклонение (в мм)									
	d m s								
T	Α	± 0,025	± 0,005	± 0,025					
-d≻	С	± 0,025	± 0,013	± 0,025					
<u> </u>	Е	± 0,025	± 0,025	± 0,025					
C	F	± 0,013	± 0,005	± 0,025					
	G	± 0,025	± 0,025	± 0,130					
	Н	± 0,013	± 0,013	± 0,025					
V V	J^1	± 0,05-0,15 ²	± 0,005	± 0,025					
∢ d ≯ m ∢	K^1	± 0,05-0,15 ²	± 0,013	± 0,025					
	L^1	± 0,05-0,15 ²	± 0,025	± 0,025					
→ S <	М	± 0,05-0,15 ²	± 0,08-0,20 ²	± 0,130					
	N	± 0,05-0,15 ²	± 0,08-0,20 ²	± 0,025					
	U	± 0,08-0,25 ²	± 0,13-0,38 ²	± 0,130					
¹ Пластины со шлифованной режущей кромкой ² В зависимости от размера пластины (см. ISO 1832)									


	5													
	Длина режущей кромки I [мм]													
вписа	Диаметр С D вписанной окружности d		R	S		T		V		W				
ММ	-	Размер	I	Размер	ı	Размер	Размер	ı	Размер	- 1	Размер	I	Размер	I
3,97	5/32								06	6,9				
5	0,197					05							03	3,8
5,56	7/32								09	9				
6	0,236					06								
6,35	2/8	06	6,4	07	7,7	061			11	11	11	11	04	4,3
8	0,315					08							05	5,2
9,525	3/8	09	9,6	11	11,6	091	09	9,5	16	16,5	16	16,5	06	6,5
10	0,394					10								
12	0,472					12								
12,7	4/8	12	12,9	15	15,5	121	12	12,7	22	22	22	22,1	08	8,7
15,875	5/8	16	16,1				15	15,8	27	27			10	10,8
16	0,63					16								
17,46	11/16												12	11,6
19,05	6/8	19	19,3			19¹	19	19,0						
20	0,787					20								
25	0,984					25								
25,4	8/8	25	25,8			25¹	25	25,4						
32	1,26					32								

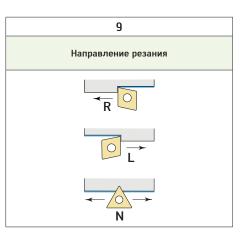

6	6							
	Толщина пластины s [мм]							
Å	01	s = 1,59						
	T1	s = 1,98						
4 55	02	s = 2,38						
Å S Y	T2	s = 2,78						
, s	03	s = 3,18						
	Т3	s = 3,97						
	04	s = 4,76						
	05	s = 5,56						
	06	s = 6,35						
	07	s = 7,94						
	09	s = 9,52						

Пример 2:

								020	
1	2	3	4	5	6	7	8	10	11

(диаметр круглых пластин в [мм])

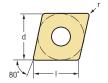
(диаметр круглых пластин в дюймах,


00 дюймовое исполнение

пересчитанный в [мм])

8

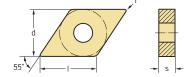
Исполнение режущих кромок



Пластины ромбические без задних углов 80° CNMG

Tiger-tec® Silver

Пластин	Ы																				
							Р				М				K				S		
	Обозначение	r MM	f MM	а _р мм	WPP05S	WPP10S	WPP20S H	WMP20S	WMP20S				WSM30S		WKK20S H	WKP30S	WSM01	WSM10S ±		WSM30S	WS10 AT
3.50	CNMG120404-FW5	0,4	0,10-0,40	0,3-3,0		®												®			
NON	CNMG120408-FW5	0,8	0,15-0,60	0,4-3,0		•					•							9			
Wiper																					
65	CNMG120408-MW5	0,8	0,20-0,65	0,8-4,0	®					_				®							
	CNMG120412-MW5	1,2	0,25-0,70	1,5-4,0	®	®							-	•							
op.aay																					
Wiper	-																				
																	_		-		
1	CNMG120404-MS3	0,4	0,12-0,25	0,6-3,0					_	_		(3)									9
2	CNMG120408-MS3	0,8	0,15-0,30	0,8-3,0		•			_	\rightarrow		(3)	8				®	$\overline{}$	_	*	
	CNMG120412-MS3	1,2	0,15-0,40	1,0-3,5													9	-			
	CNMG190612-MS3	1,2	0,18-0,50	1,2-5,0					\rightarrow	9							9				
1	CNMG120404-MU5	0,4	0,15-0,30	0,5-4,0																	
	CNMG120408-MU5	0,8	0,15-0,40	0,6-5,0	•	®	(3)											$\overline{}$			
	CNMG120412-MU5	1,2	0,20-0,50	1,0-5,0	®																
	CNMG120416-MU5	1,6	0,25-0,55	1,2-5,0	®	_															
	CNMG160612-MU5	1,2	0,30-0,55	1,0-7,0	•	3															


Размеры пластин см. в разделе «Система обозначений по ISO 1832»

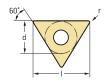
HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины ромбические без задних углов 55° DNMG

Tiger-tec® Silver

Пластины																					
						ı	P HC					M HC				K IC			S		
	Обозначение	r MM	f MM	а _р мм	WPP05S	WPP10S	WPP20S	WPP30S	WMP20S	WMP20S	WSM01	WSM10S	WSM20S	WSM30S	WKK10S	WKK20S	WKP30S	WSM01	WSM10S	WSM20S	WSM30S
ALL T	DNMG110404-FW5	0,4	0,10-0,35	0,3-2,0		•						@							9		
A355	DNMG110408-FW5	0,8	0,15-0,50	0,4-2,0		•						@							3		
Winor	DNMG150404-FW5	0,4	0,10-0,40	0,3-3,0		•						(
Wiper	DNMG150408-FW5	0,8	0,15-0,50	0,4-3,0		•						(
	DNMG150604-FW5	0,4	0,10-0,40	0,3-3,0		•						@							®		
	DNMG150608-FW5	0,8	0,15-0,50	0,4-3,0		•						®							•		
Sec. 1	DNMG110408-MW5	0,8	0,15-0,50	0,8-3,0		•	®								3						
25	DNMG110412-MW5	1,2	0,20-0,60	1,5-3,0		•	•							(3						
Winas	DNMG150408-MW5	0,8	0,15-0,55	0,8-4,0		•									3						
Wiper	DNMG150412-MW5	1,2	0,20-0,65	1,5-4,0		•								(3						
	DNMG150608-MW5	0,8	0,15-0,55	1,5-4,0	•	•	•								3						
	DNMG150612-MW5	1,2	0,20-0,65	1,5-4,0	•	•	®							(3						
4970	DNMG110408-MS3	0,8	0,12-0,30	0,8-2,5							•	®	1	E C				®	®		#
- ALTON	DNMG150404-MS3	0,4	0,12-0,25	0,6-2,5							®	®						®	®		
	DNMG150408-MS3	0,8	0,15-0,30	0,8-2,5		•					•	•	1	3				®	®		23
	DNMG150604-MS3	0,4	0,12-0,25	0,6-2,5							®	®						®	®		
	DNMG150608-MS3	0,8	0,15-0,30	0,8-2,5							•	•	1					®	•		#
	DNMG110408-MU5	0,8	0,18-0,35	0,6-4,0		•	(3)		(3)	(2)		(29							(3)	
A STATE OF THE STA	DNMG150408-MU5	0,8	0,18-0,35	0,6-5,0		•						((3)	
	DNMG150608-MU5	0,8	0,18-0,35	0,6-5,0	•	•						(
	DNMG150612-MU5	1,2	0,20-0,45	1,0-5,0	•	•			(3)			(29							(3)	
	DNMG150616-MU5	1,6	0,25-0,50	1,2-5,0		0						((3)	

Размеры пластин см. в разделе «Система обозначений по ISO 1832»


НС = твёрдый сплав с покрытием

Пластины трёхгранные без задних углов 60° TNMG

Tiger-tec® Silver

Пластинь	bl																
	Обозначение	r MM	f MM	а _р мм	WPP05S	WPP10S	WPP20S H 4	WPP30S	WMP20S	WMP20S	WSM10S H W	WSMZ0S	WKK10S	WKK20S H	WSM10S	WSM20S H S	WSM30S
200	TNMG160404-FW5	0,4	0,10-0,40	0,3-3,0		0	_										
	TNMG160408-FW5	0,8	0,15-0,50	0,4-3,0		•					@			-	®	(3)	
<u>Wiper</u>												+					
2.1	TNMG160408-MW5	0,8	0,15-0,55	0,8-4,0		•	3						•				
	TNMG160412-MW5	1,2	0,20-0,65	1,5-4,0		•	•						•				
Wiper																	
1	TNMG160404-MU5	0,4	0,15-0,30	0,5-4,0		0											
	TNMG160408-MU5	0,8	0,18-0,35	0,6-4,0		8				4	•						
V/	TNMG160412-MU5	1,2	0,20-0,45	1,0-4,0		3											

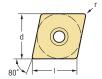
Размеры пластин см. в разделе «Система обозначений по ISO 1832»

НС = твёрдый сплав с покрытием

Пластины треугольные без задних углов 80° WNMG

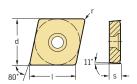
Tiger-tec® Silver

Пластин	Ы																			
							Р				N	1			K			5	;	
							НС				Н	С			НС			Н	С	
	Обозначение	r MM	f MM	а _р мм	WPP05S	WPP10S	WPP20S	WPP30S	WMP20S	WMP20S	WSM10S	WSM20S	WSM30S	WKK10S	WKK20S	WKP30S	WSM01	WSM10S	WSM20S	WSM30S
	WNMG060404-FW5	0,4	0,10-0,35	0,3-2,0		•					•	(3)						•		
703	WNMG060408-FW5	0,8	0,15-0,50	0,4-2,0		•					•							•		
1	WNMG080404-FW5	0,4	0,10-0,40	0,3-3,0		•					•							•		
Wiper	WNMG080408-FW5	0,8	0,15-0,60	0,4-3,0		•					•							•		
minutesis Presidentia	WNMG080412-FW5	1,2	0,25-0,65	0,6-3,0		•														
-24	WNMG060408-MW5	0,8	0,15-0,50	0,8-3,0		•								•						
POJ	WNMG060412-MW5	1,2	0,20-0,60	1,5-3,0		•								®						
TO VIEW	WNMG080408-MW5	0,8	0,20-0,65	0,8-4,0	•	•		((4)				•						
Wiper	WNMG080412-MW5	1,2	0,25-0,70	1,5-4,0	•	•	(3)	(39				•	(3)					
C. A.	WNMG080404-MS3	0,4	0,12-0,25	0,6-3,0						•	9 @	•	23				®	®		3
	WNMG080408-MS3	0,8	0,15-0,30	0,8-3,0						•	9 @	•	33				®	®		3
-A-	WNMG060408-MU5	0,8	0,15-0,35	0,6-3,0		•		((4		(3)								
VOC.	WNMG080404-MU5	0,4	0,15-0,30	0,5-4,0		•		((4)		(3)								
100	WNMG080408-MU5	0,8	0,15-0,40	0,6-5,0		•		(*	3		49								
	WNMG080412-MU5	1,2	0,20-0,50	1,0-5,0	•	•		(*	3		(4)								


Размеры пластин см. в разделе «Система обозначений по ISO 1832»

НС = твёрдый сплав с покрытием

Пластины ромбические с задними углами 80° **CCGT**


Пластинь	ı																	
								Р				N	1		ŀ	(:	S
						HE		Н	C			Н	С		Н	С	Н	IC
	Обозначение	I MM	r MM	f MM	а _р мм	WEP10C	WPP10S	WPP20S	WPP30S	WMP20S	WMP20S	WSM10S	WSM20S	WSM30S	WKK10S	WKK20S	WSM10S	WSM2US WSM30S
1011	CCGT060201M-FP2	6,45	0,07	0,02-0,06	0,1-1,5	•												
	CCGT060202M-FP2	6,45	0,17	0,05-0,12	0,2-2,0	•												
	CCGT060204M-FP2	6,45	0,37	0,08-0,25	0,2-2,5	•												
	CCGT09T301M-FP2	9,67	0,07	0,02-0,06	0,1-1,5	•												
	CCGT09T302M-FP2	9,67	0,17	0,05-0,12	0,2-2,0	•												
	CCGT09T304M-FP2	9,67	0,37	0,08-0,25	0,2-2,5	•												
	CCGT09T308M-FP2	9,67	0,77	0,10-0,30	0,3-3,0	•												

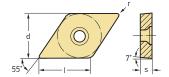
Размеры пластин см. в разделе «Система обозначений по ISO 1832»

НЕ = кермет с покрытием

НС = твёрдый сплав с покрытием

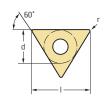
Пластины ромбические с задними углами 80° **CPGT**

Пластины																		
						HE		P H	c .			M HC			K IC		S HC	
	Обозначение	I MM	r MM	f MM	а _р мм	WEP10C	WPP10S	WPP20S	WPP30S	WMP20S	WMP20S	WSM20S	WSM30S	WKK10S	WKK20S	WSM10S	WSM20S	WSM30S
1011	CPGT050202M-FP2	5,64	0,17	0,05-0,12	0,2-2,0	•												
	CPGT050204M-FP2	5,64	0,37	0,08-0,20	0,2-2,0	•												


Размеры пластин см. в разделе «Система обозначений по ISO 1832»

HE = кермет с покрытием HC = твёрдый сплав с покрытием

Пластины ромбические с задними углами 55°


Пластины																			
								Р				М			K		:	S	
						HE		Н	C ,			НС	-		Н		Н	IC	
	Обозначение	I MM	r MM	f MM	а _р мм	WEP10C	WPP10S	WPP20S	WPP30S	WMP20S	WMP20S	WSM10S	WSM20S	WSM30S	WKK10S	WKK20S	WSM10S	WSMZUS	WOINIOUS
1011	DCGT070202M-FP2	7,75	0,17	0,05-0,12	0,2-2,0	•													
	DCGT070204M-FP2	7,75	0,37	0,08-0,25	0,2-2,5	9													
	DCGT11T3005M-FP2	11,63	0,03	0,01-0,04	0,1-1,0	®													
	DCGT11T301M-FP2	11,63	0,07	0,02-0,06	0,1-1,5	•													
	DCGT11T302M-FP2	11,63	0,17	0,05-0,12	0,2-2,0	®													
	DCGT11T304M-FP2	11,63	0,37	0,08-0,25	0,2-2,5	•													
	DCGT11T308M-FP2	11,63	0,77	0,10-0,30	0,3-3,0	®													

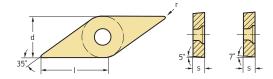
Размеры пластин см. в разделе «Система обозначений по ISO 1832»

НЕ = кермет с покрытием

. НС = твёрдый сплав с покрытием

Пластины трёхгранные с задними углами 60° **TCGT**

Пластины


								Р				М			k	(S	
						HE		Н	2			НС			Н	С		НС	
	Обозначение	l mm	r MM	f MM	а _р мм	WEP10C	WPP10S	WPP20S	WPP30S	WMP20S	WMP20S	WSM10S	WSM20S	WSM30S	WKK10S	WKK20S	WSM10S	WSM20S	WSM30S
	TCGT06T104M-FP2	6,87	0,37	0,08-0,25	0,2-2,0	®													
	TCGT090204M-FP2	9,62	0,37	0,08-0,25	0,2-2,5	®													
W.	TCGT110202M-FP2	11,00	0,17	0,05-0,12	0,2-2,0	®													
	TCGT110204M-FP2	11,00	0,37	0,08-0,25	0,2-2,5	®													

Размеры пластин см. в разделе «Система обозначений по ISO 1832»

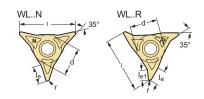
HE = кермет с покрытием HC = твёрдый сплав с покрытием

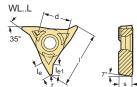
Пластины ромбические с задними углами 35° VCGT

Пластины	Обозначение I r f ар мм VCGT1103005M-FP2 11.07 0.03 0.01-0.04 0.1-1.0 VCGT110301M-FP2 11.07 0.07 0.02-0.06 0.1-1.5 VCGT110302M-FP2 11.07 0.17 0.05-0.12 0.2-2.0 VCGT110304M-FP2 11.07 0.37 0.08-0.25 0.2-2.5 VCGT160402M-FP2 16.61 0.17 0.05-0.12 0.2-2.0 VCGT160404M-FP2 16.61 0.37 0.08-0.25 0.2-2.5																		
						HE		P H	С			N H			H _.	C		S HC	
	Обозначение	l mm		· ·		WEP10C	WPP10S	WPP20S	WPP30S	WMP20S	WMP20S	WSM10S	WSM20S	WSM30S	WKK10S	WKK20S	WSM10S	WSM20S	WSM30S
	VCGT1103005M-FP2	11,07	0,03	0,01-0,04	0,1-1,0	•													
	VCGT110301M-FP2	11,07	0,07	0,02-0,06	0,1-1,5	®													
	VCGT110302M-FP2	11,07	0,17	0,05-0,12	0,2-2,0	•													
	VCGT110304M-FP2	11,07	0,37	0,08-0,25	0,2-2,5	•													
	VCGT160402M-FP2	16,61	0,17	0,05-0,12	0,2-2,0	®													
	VCGT160404M-FP2	16,61	0,37	0,08-0,25	0,2-2,5	•													
	VCGT160408M-FP2	16,61	0,77	0,10-0,30	0,3-3,0	•													

Размеры пластин см. в разделе «Система обозначений по ISO 1832»

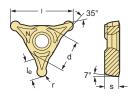
НЕ = кермет с покрытием


НС = твёрдый сплав с покрытием



Пластины для системы профильной обработки WL

Tiger-tec® Silver

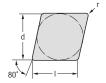


Пластинь	ı																
									Р		N	1	ı	K	S	5	T
	Обозначение	r MM	I MM	I _e	l _{e1}	f MM	а _р мм		WPP20S H	WMPZUS	WMP20S T		WKK10S +	WKK20S =	WSM20S =	WSM30S	
6/	WL25-VC0704N-MP4	0,4	25	6,3		0,08-0,25	0,4-2,5	•	(3)								
\mathbf{V}	WL25-VC0708N-MP4	0,8	25	7,1		0,12-0,32	0,5-2,5	®	(3)		1						\perp
•									_						Ш		\perp
6/	WL25-VC0704R-MP4	0,4	25	6,2	3,9	0,08-0,25	0,4-2,5	®									
Y	WL25-VC0708R-MP4	0,8	25	6,6	4,6	0,12-0,32	0,5-2,5	®									
•																	
6	WL25-VC0704L-MP4	0,4	25	6,2	3,9	0,08-0,25	0,4-2,5	@									
	WL25-VC0708L-MP4	0,8	25	6,6	4,6	0,12-0,32	0,5-2,5	®	(3)		_						
A																	
6	WL25-VC0704N-MM4	0,4	25	6,3		0,08-0,25	0,4-2,5		•	9	39 6	•					
V	WL25-VC0708N-MM4	0,8	25	7,1		0,12-0,32	0,5-2,5		•	9	(4)	•					
•																	
6/	WL25-VC0704R-MM4	0,4	25	6,2	3,9	0,08-0,25	0,4-2,5		_	_	9	•					
V	WL25-VC0708R-MM4	0,8	25	6,6	4,6	0,12-0,32	0,5-2,5		•	9	19 (1	•					
6	WL25-VC0704L-MM4	0,4	25	6,2	3,9	0,08-0,25	0,4-2,5		•	9	(4)	•					
	WL25-VC0708L-MM4	0,8	25	6,6	4,6	0,12-0,32	0,5-2,5		•	9		•					

НС = твёрдый сплав с покрытием

Пластины для системы профильной обработки WL

Tiger-tec® Silver

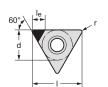


Пластинь	I																	
								P HC			M HC		K		Н			
	Обозначение	r MM	I MM	l _e MM	f MM	а _р мм	WPP10S	WPP20S	WMP20S	WMP20S	WSM20S	WSM30S	WKK10S	WKK20S	WSM20S	WSM30S		
	WL25-RC0420N-MU6	2	25	7,2	0,12-0,40	0,5-2,0												
V																		
<u> </u>							116										Ш	_

НС = твёрдый сплав с покрытием

Пластины с CBN ромбические без задних углов 80° **CNGN**

Пластин	Ы														
		¥					K	N	S		Н		0		
		кромок				CN	ВН	DF	ВН		BL		DP		
	Обозначение	Кол-во режущих и	r MM	f MM	а _р мм	WCK10	WBK20	WBK3U WDN10	WBS10	WBH10C	WBH10	WBH20	WDN10		
	CNGN120408TM-S	4	0,8	0,05-0,50	0,1-5,0		1	<u>ş</u>						T	T
	CNGN120412TM-S	4	1,2	0,05-0,50	0,1-5,0		1	1 3							
	CNGN120416TM-S	4	1.6	0.05=0.50	0.1–5.0		5								


Размеры пластин см. в разделе «Система обозначений по ISO 1832»

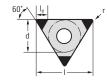
CN = керамика Si₃N₄

ВН = сплав с высоким содержанием СВN DP = поликристаллический алмаз

 $\mathsf{BL} = \mathsf{cn}$ лав с низким содержанием CBN

Пластины с CBN трёхгранные с задними углами 60° **TCGW**

Π.	ласт	гины


		кромок						CN	К	N	S		H BL		0	
	Обозначение	Кол-во режущих кр	l _e мм	r MM	α	f MM	а _р мм	WCK10		WBK30 WDN10	WBS10	WBH10C		2 5	MDINIM	
	TCGW06T102TS-1	1	2,4	0,2	7°	0,05-0,15	0,1-0,3									
40	TCGW06T102TS-1	1	2,4	0,2	7°	0,02-0,12	0,1-0,3						9			
	TCGW06T104TS-1	1	2,2	0,4	7°	0,05-0,15	0,1-0,3									
	TCGW06T104TS-1	1	2,2	0,4	7°	0,02-0,12	0,1-0,3						9	(4		

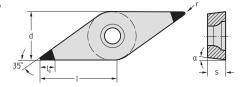
Размеры пластин см. в разделе «Система обозначений по ISO 1832»

CN = керамика Si₃N₄
BH = сплав с высоким содержанием CBN
DP = поликристаллический алмаз
BL = сплав с низким содержанием CBN

Пластины с CBN трёхгранные с задними углами 60° **TCGW**

Пластин	ol																
		MOK							K		N S		Н		0		
		х кро						CN	BH	[)P BH		BL		DP		
	Обозначение	Кол-во режущих кромок	l _e	r MM	α	f MM	а _р мм	WCK10	WBK20	WBK30	WDN10 WBS10	WBH10C	WBH10	WBH20	WDN10		
	TCGW110202TS-3	3	2,8	0,2	7°	0,05-0,15	0,1-0,3		(3)							Т	
	TCGW110204TS-3	3	3,1	0,4	7°	0,05-0,20	0,1-0,3		(3)								
	TCGW110204TM-3	3	3,1	0,4	7°	0,05-0,20	0,1-0,3					•	®	(3)			
	TCGW110208TM-3	3	2,8	0,8	7°	0,05-0,25	0,1-0,5					•	3				
																T	
																\neg	_

Размеры пластин см. в разделе «Система обозначений по ISO 1832»


CN = керамика Si₃N₄

ВН = сплав с высоким содержанием СВN

DP = поликристаллический алмаз

BL = сплав с низким содержанием CBN

Пластины с CBN ромбические с задними углами 35° **VBGW**

Пластины																
		кромок						CN	K Bi		N DP E	S BH	H BL		O DP	
	Обозначение	Кол-во режущих к	l _e MM	r MM	α	f MM	а _р мм	WCK10	WBK20	WBK30	WDN10	WBS10	WBH10C WBH10	WBH20	WDN10	
	VBGW160404TS-2	2	3	0,4	5°	0,05-0,20	0,1-0,5						•			
	VBGW160408TS-2	2	3	0,8	5°	0,05-0,25	0,1-0,5						•			
	VBGW110304TM-2	2	3	0,4	5°	0,05-0,20	0,1-0,5						•			
	VBGW160402TM-2	2	3,4	0,2	5°	0,05-0,25	0,1-0,5						•			
	VBGW160404TM-2	2	3	0,4	5°	0,05-0,20	0,1-0,5						•			
	VBGW160408TM-2	2	3	0,8	5°	0,05-0,25	0,1-0,5						•			

Размеры пластин см. в разделе «Система обозначений по ISO 1832»

CN = керамика Si₃N₄ BH = сплав с высоким содержанием CBN DP = поликристаллический алмаз BL = сплав с низким содержанием CBN

Пластины керамические с задними углами **RPGN**

Пластин	Ы														
							K		N	S		Н		0	
						CN	B	Н	OP I	BHC	N	В	_	DP	ı
	Обозначение	d MM	α	f MM	а _р мм	WCK10	WBK20	WBK30	WDN10	WBS10	UICIW	WBHIUC	WBH20	WDN10	
	RPGN090300E	9,53	11°	0,10-0,20	0,1-2,4					•	9				_
	RPGN120400E	12,7	11°	0,10-0,30	0,1-3,6					•	9				
															_
	RPGN090300T01020	9,53	11°	0,10-0,25	0,2-2,4					9	9				
	RPGN120400T01020	12,7	11°	0,10-0,32	0,2-3,6					•	9				
													-		Τ

Размеры пластин см. в разделе «Система обозначений по ISO 1832»

CN = керамика Si₃N₄ BH = сплав с высоким содержанием CBN

DP = поликристаллический алмаз BL = сплав с низким содержанием CBN

Обзор программы токарных державок Walter Turn для наружной обработки Токарные державки с хвостовиком прямоугольного сечения — Система профильной обработки WL

Вид обработки	\$ 30° \qquad \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \q
Тип	WL
Обозначение	W1011P
Система зажима	Винт
Подвод СОЖ	Направленный
Сечение хвостовика, h [мм]	20–25
Сечение хвостовика, h [дюйм]	0,750-1,000
Размер пластины, І [мм]	25
Стр.	24

Державки — Система профильной обработки

W1011...-P mm

Walter Turn

Инструмент	Обозначение		h = h ₁	b MM	f MM	l ₁	l ₄	Υ	λ_{s}	Тип
←h→ G1/8"	→ W1011-2020R/L-WL25-P	25	20	20	25	115	33,5	0°	0°	WL25
G1/8" →	★ W1011-2525R/L-WL25-P	25	25	25	32	130	33,5	0°	0°	WLZS
M6 † 107.5°										
	V 11/1 25 1/5050011	1								<u> </u>

Размеры указаны для эталонной пластины: WL25-VC0708N

годинов указапы для эталоппои пластины: WL23-VCU/UBN
Передний угол γ (для пластин без стружколомающей геометрии) и угол наклона λ_S см. в разделе «Техническая информация. Токарная обработка ISO» Набор для подключения системы подачи СОЖ с резьбой G 1/8" см. в разделе «Сборочные детали и комплектующие»
Максимальное рекомендованное давление СОЖ составляет 150 бар
Пример заказа инструмента правого исполнения: W1011-2020R-WL25-P / пример заказа инструмента левого исполнения: W1011-2020L-WL25-P
Сборочные детали входят в комплект поставки

Сборочные детали	Тип	WL25
	Винт пластины Момент затяжки	FS1495 (Torx 20IP) 5,0 HM
	Пробка резьбовая G 1/8"	FS2258 (SW 5)
	Пробка резьбовая М6	FS2288 (SW 3)
	- Ключ	FS1464 (Torx 20IP)

Пластины

							Р			М		ŀ	(S		
							НС			HC		Н	С	Н	С	
	Обозначение	r MM	l _{e1}	f MM	а _р мм	WPP10S	WPP20S	WMP20S	WMP20S	WSM20S	WSM30S	WKK10S	WKK20S	WSM20S	WSM30S	
The same of the sa	WL25-VC0704N-MM4	0,4		0,08-0,25	0,4-2,5									49		\top
	WL25-VC0708N-MM4	0,8		0,12-0,32	0,5-2,5											
V	WL25-VC0704N-MP4	0,4		0,08-0,25	0,4-2,5	•										
	WL25-VC0708N-MP4	0,8		0,12-0,32	0,5-2,5	®										
	WL25-VC0704R-MM4	0,4	3,9	0,08-0,25	0,4-2,5									(3)		T
	WL25-VC0708R-MM4	0,8	4,6	0,12-0,32	0,5-2,5									49		
V	WL25-VC0704R-MP4	0,4	3,9	0,08-0,25	0,4-2,5	®										
	WL25-VC0708R-MP4	0,8	4,6	0,12-0,32	0,5-2,5	•										
TEAT?	WL25-VC0704L-MM4	0,4	3,9	0,08-0,25	0,4-2,5									49		
	WL25-VC0708L-MM4	0,8	4,6	0,12-0,32	0,5-2,5											
V	WL25-VC0704L-MP4	0,4	3,9	0,08-0,25	0,4-2,5	®										
	WL25-VC0708L-MP4	0,8	4,6	0,12-0,32	0,5-2,5	•										
	WL25-RC0420N-MU6	2		0,12-0,40	0,5-2,0									(2)		
\bigvee																

НС = твёрдый сплав с покрытием

Державки — Система профильной обработки W1011...-P inch

Walter Turn

Инструмент		Обозначение	<u>(in</u>	h = h ₁ дюйм	b дюйм	f дюйм	l ₁ дюйм	I ₄ дюйм	Υ	λ_{S}	Тип
—h— G1/8"		★ W1011.12R/L-WL25-P	0,500	0,750	0,750	1,000	4,500	1,319	0°	0°	WL25
G1/8" →		★ W1011.16R/L-WL25-P	0,500	1,000	1,000	1,250	6,000	1,319	0°	0°	WLZJ
	1										
M6											
	l ₁										
	, I										
G1/8"											
107.5°	Īl										
-h₁ f	1 1										

Размеры указаны для эталонной пластины: WL25-VC0708N

- комперы указапы для эталоппои пластины: WL23-VCU/UбN
Передний угол γ (для пластин без стружколомающей геометрии) и угол наклона λ_S см. в разделе «Техническая информация. Токарная обработка ISO» Набор для подключения системы подачи СОЖ с резьбой G 1/8" см. в разделе «Сборочные детали и комплектующие»
Максимальное рекомендованное давление СОЖ составляет 150 бар
Пример заказа инструмента правого исполнения: W1011.12R-WL25-P / пример заказа инструмента левого исполнения: W1011.12L-WL25-P
Сборочные детали входят в комплект поставки

Сборочные детали	Тип	WL25
	Винт пластины Момент затяжки	FS1495 (Torx 20IP) 5,0 HM
	Пробка резьбовая G 1/8"	FS2258 (SW 5)
	Пробка резьбовая М6	FS2288 (SW 3)
	Ключ	FS1464 (Torx 20IP)

Пластины

							Р			М		ŀ	<	S		
							НС			НС		Н	ic	HC	-	
	Обозначение	r MM	l _{e1}	f MM	а _р мм	WPP10S	WPP20S	WMP20S	WMP20S	WSM20S	WSM30S	WKK10S	WKK20S	WSM20S	WSM30S	
	WL25-VC0704N-MM4	0,4		0,08-0,25	0,4-2,5									(2)		\top
	WL25-VC0708N-MM4	0,8		0,12-0,32	0,5-2,5									(3)		
V	WL25-VC0704N-MP4	0,4		0,08-0,25	0,4-2,5	•										
	WL25-VC0708N-MP4	0,8		0,12-0,32	0,5-2,5	•										
TORK	WL25-VC0704R-MM4	0,4	3,9	0,08-0,25	0,4-2,5											
	WL25-VC0708R-MM4	0,8	4,6	0,12-0,32	0,5-2,5											
V	WL25-VC0704R-MP4	0,4	3,9	0,08-0,25	0,4-2,5	•										
	WL25-VC0708R-MP4	0,8	4,6	0,12-0,32	0,5-2,5	•										
	WL25-VC0704L-MM4	0,4	3,9	0,08-0,25	0,4-2,5											
	WL25-VC0708L-MM4	0,8	4,6	0,12-0,32	0,5-2,5											
V	WL25-VC0704L-MP4	0,4	3,9	0,08-0,25	0,4-2,5	•										
	WL25-VC0708L-MP4	0,8	4,6	0,12-0,32	0,5-2,5	•										
CN2	WL25-RC0420N-MU6	2		0,12-0,40	0,5-2,0						3			(2)		
MON.																
\bigvee																
																\top

НС = твёрдый сплав с покрытием

Обзор программы токарных державок Walter Turn для внутренней обработки Втулки для расточных державок

Обозначение	A2140-W
Подвод СОЖ	Осевой
Диаметр расточной державки d ₁ [мм]	16-40
Стр.	30
	9

Антивибрационные расточные державки Accure-tec

Обозначение	A3000	A3000-C	A3000-HSK-T
Тип инструмента		Адаптеры QuadFit	
На станке	Цилиндрический хвостовик	Walter Capto™ по ISO 26623	HSK-T DIN 69893-7
На инструменте	Q25 / Q32 / Q40 / Q50	Q25 / Q32 / Q40 / Q50	Q25 / Q32 / Q40 / Q50
Диаметр расточной державки d ₂ [мм]	25–50	25–50	25-50
Длина расточной державки І4 [мм]	130-470	130-468	130-468
Стр.	31	33	34

Обзор программы токарных державок Walter Turn для внутренней обработки Режущая головка QuadFit — пластины без задних углов

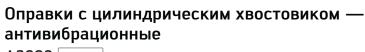
Вид обработки	95°	33° ≤ 30°	95°
Тип	80 CN	55°/_ DN	80° WN
Обозначение	QDCLN	QDDUN	QDWLN
Угол в плане к	95°	93°	95°
Система зажима	Прихват	Прихват	Прихват
Подвод СОЖ	Внутренний	Внутренний	Внутренний
Размер QuadFit	Q32-Q50	Q32-Q50	Q32-Q50
Размер пластины, І [мм]	12–16	11–15	6-8
Стр.	35	36	37

Режущая головка QuadFit — пластины с задними углами

Вид обработки	95	33° ≤ 30°	≤ 60°	≤ 30°	91°	93° ≤ 50°
Тип	80° CC	55° DC	55° DC	55° DC	760° TC	35° VB/VC
Обозначение	QSCLC	QSDUC	QSDXC	QSDUCX	QSTFC	QSVUB
Угол в плане к	95°	93°	62,5°	32°	91°	93°
Система зажима	Винт	Винт	Винт	Винт	Винт	Винт
Подвод СОЖ	Внутренний	Внутренний	Внутренний	Внутренний	Внутренний	Внутренний
Размер QuadFit	Q25-Q50	Q25-Q50	Q25-Q50	Q25-Q50	Q25-Q50	Q25-Q50
Размер пластины, І [мм]	9–12	11	11	11	11–16	11–16
Стр.	38	39	41	40	42	43

Втулки для расточных державок

A2140-W mm



- Хвостовик Weldon по DIN 9766
- Самоцентрирование для цилиндрического хвостовика

Инструмент	Обозначение	d ₁ мм	d ₁₁ мм	I ₁ мм	I ₄	∫ kg
Цилиндрический хвостовик	★ A2140-W16-R06-048	16	6	48	5	0,1
с лыской по ISO 9766	★ A2140-W16-R08-048	16	8	48	5	0,1
AE	★ A2140-W16-R10-048	16	10	48	5	0,1
<u> </u>	★ A2140-W16-R12-048	16	12	48	5	0,1
d_{11}	★ A2140-W20-R06-055	20	6	55	5	0,1
` <u>`</u>	★ A2140-W20-R08-055	20	8	55	5	0,1
14	★ A2140-W20-R10-055	20	10	55	5	0,1
l= l1	★ A2140-W20-R12-055	20	12	55	5	0,1
	★ A2140-W20-R16-055	20	16	55	5	0,1
	A2140-W25-R06-061	25	6	61	5	0,2
	A2140-W25-R08-061	25	8	61	5	0,2
	A2140-W25-R10-061	25	10	61	5	0,2
	A2140-W25-R12-061	25	12	61	5	0,2
	A2140-W25-R16-061	25	16	61	5	0,1
	A2140-W32-R06-065	32	6	65	5	0,3
	A2140-W32-R08-065	32	8	65	5	0,3
	A2140-W32-R10-065	32	10	65	5	0,3
	A2140-W32-R12-065	32	12	65	5	0,3
	A2140-W32-R16-065	32	16	65	5	0,3
	A2140-W32-R20-065	32	20	65	5	0,2
	A2140-W40-R06-075	40	6	75	5	0,6
	A2140-W40-R08-075	40	8	75	5	0,6
	A2140-W40-R10-075	40	10	75	5	0,6
	A2140-W40-R12-075	40	12	75	5	0,6
	A2140-W40-R16-075	40	16	75	5	0,6
	A2140-W40-R20-075	40	20	75	5	0,6
	A2140-W40-R25-075	40	25	75	5	0,5

Примечание: самоцентрирование предусмотрено на всех расточных державках Walter Turn с хвостовиком круглого сечения (-R) Ø 6–25 мм. Максимальное рекомендованное давление СОЖ составляет 80 бар

A3000 mm

Accure-tec

[–] С предустановленным гашением вибраций

Инструмент	Обозначение	d ₁ мм	d ₁₁	l ₄	l ₅	l ₁	d ₁₃	S kg
Цилиндрический хвостовик с лыской	★ A3000-25-Q25-130	25	Q25	130	100	235	G 1/4	0,9
↓ d _{13 ↓}	★ A3000-25-Q25-180	25	Q25	180	100	285	G 1/4	1,1
d44	A3000-32-Q32-160	32	Q32	160	128	293	G 1/4	1,8
14	A3000-32-Q32-224	32	Q32	224	128	357	G 1/4	2,3
11 15 Quad	A3000-40-Q40-208	40	Q40	208	160	374	G 1/4	3,8
	A3000-40-Q40-288	40	Q40	288	160	454	G 1/4	4,6
	A3000-50-Q50-268	50	Q50	268	200	475	G 1/4	7,5
	A3000-50-Q50-368	50	Q50	368	200	575	G 1/4	9,1
Цилиндрический хвостовик без лыски	★ A3000-25-Q25-230-CS	25	Q25	230	75	310	M8X1	1,7
↓ d ₁₃ ↓	★ A3000-32-Q32-288-CS	32	Q32	288	98	389	M8X1	2,7
da Tolanda da	A3000-40-Q40-368	40	Q40	368	160	534	G 1/4	5,5
11	A3000-50-Q50-468	50	Q50	468	200	675	G 1/4	11

Режущие головки QuadFit — см. главу «Токарная обработка» A3000...-CS = исполнение, усиленное твёрдым сплавом Сборочные детали входят в комплект поставки

Сборочные детали	d ₁₁	Q25	Q32	Q40	Q50
	Ключ крючковый Момент затяжки	SD9000-Q25 25 Нм	SD9000-Q32 25 Нм	SD9000-Q40 35 Нм	SD9000-Q50 55 Нм
	Переходник для подвода СОЖ для исполнения CS	CN3001-M8-G1/4	CN3001-M8-G1/4		

Комплектующие	d ₁₁	Q32	Q40	Q50
	Ключ динамометрический с крючком Момент затяжки	SD4000-Q32-25 25 Нм	SD4000-Q40-35 35 Нм	SD4000-Q50-55 55 Нм
	Крючок для динамометрического ключа	SD6000-Q32	SD6000-Q40	SD6000-Q50

Оправки с цилиндрическим хвостовиком антивибрационные

A3000 inch

Accure-tec

- Для режущих головок QuadFit
- С предустановленным гашением вибраций

Инструмент	Обозначение	d ₁ дюйм	d ₁₁	I ₄ дюйм	l ₅ дюйм	I ₁ дюйм	d ₁₃	lbs
Цилиндрический хвостовик с лыской	★ A3000.16-Q25-133	1,000	Q25	5,250	4,000	9,430	G 1/4	4,37
d _{13 ⊥}	★ A3000.16-Q25-184	1,000	Q25	7,250	4,000	11,430	G 1/4	5,36
d ₁₁ d ₁	A3000.20-Q32-165	1,250	Q32	6,500	5,000	11,713	G 1/4	3,97
14	A3000.20-Q32-229	1,250	Q32	9,000	5,000	14,213	G 1/4	5,07
I ₁	A3000.24-Q40-203	1,500	Q40	8,000	6,000	14,252	G 1/4	7,72
	A3000.24-Q40-279	1,500	Q40	11,000	6,000	17,252	G 1/4	9,48
	A3000.32-Q50-267	2,000	Q50	10,500	8,000	18,791	G 1/4	16,76
	A3000.32-Q50-368	2,000	Q50	14,496	8,000	22,791	G 1/4	20,28
Цилиндрический хвостовик без лыски	★ A3000.16-Q25-235-CS	1,000	Q25	9,250	3,000	12,430	M8X1	8,75
↓ d ₁₃ ↓	★ A3000.20-Q32-292-CS	1,250	Q32	11,500	3,750	15,463	M8X1	13,12
d_{11}	A3000.24-Q40-356	1,500	Q40	14,000	6,000	20,252	G 1/4	11,46
† - I4 - I5 - 1	A3000.32-Q50-470	2,000	Q50	18,500	8,000	26,791	G 1/4	24,69
14 I1 IS Quadfit								

Режущие головки QuadFit — см. главу «Токарная обработка» A3000...-CS = исполнение, усиленное твёрдым сплавом Сборочные детали входят в комплект поставки

Сборочные детали	d ₁₁	Q25	Q32	Q40	Q50
	Ключ крючковый Момент затяжки	SD9000-Q25 25 Нм	SD9000-Q32 25 Нм	SD9000-Q40 35 Нм	SD9000-Q50 55 Нм
	Переходник для подвода СОЖ для исполнения CS	CN3001-M8-G1/4	CN3001-M8-G1/4		

Комплектующие	d ₁₁	Q32	Q40	Q50
	Ключ динамометрический с крючком Момент затяжки	SD4000-Q32-25 25 Нм	SD4000-Q40-35 35 Нм	SD4000-Q50-55 55 Нм
	Крючок для динамометрического ключа	SD6000-Q32	SD6000-Q40	SD6000-Q50

Оправки Walter Capto™ — антивибрационные

A3000-C mm

Accure-tec

- Для режущих головок QuadFit
- С предустановленным гашением вибраций

Инструмент				d ₁₂	14	I ₁₆	l ₁₇		ر [kg
	Обозначение	d ₁	d ₁₁	ММ	ММ	ММ	ММ	n _{max}	[Ng]
Walter Capto™ no ISO 26623	★ A3000-C4-Q25-130	C4	Q25	25	130	107	110	10000	8,0
, d ₁₂	★ A3000-C4-Q25-180	C4	Q25	25	180	157	160	8000	1
The A	★ A3000-C4-Q32-160	C4	Q32	32	160	137	140	10000	1,2
d ₁₁	★ A3000-C4-Q32-224	C4	Q32	32	224	201	204	8000	1,7
116	★ A3000-C5-Q25-130	C5	Q25	25	130	107	110	10000	0,9
I ₁₇ Walter	★ A3000-C5-Q25-180	C5	Q25	25	180	157	160	8000	1,1
14	★ A3000-C5-Q25-230	C5	Q25	25	230	207	210	6000	1,3
- QuadFit	★ A3000-C5-Q32-160	C5	Q32	32	160	136	140	10000	1,4
	★ A3000-C5-Q32-224	C5	Q32	32	224	200	204	8000	1,8
	★ A3000-C5-Q32-288	C5	Q32	32	288	264	268	6000	2,2
	★ A3000-C5-Q40-208	C5	Q40	40	208	184	188	8000	2,5
	★ A3000-C5-Q40-288	C5	Q40	40	288	264	268	6000	3,3
	★ A3000-C5-Q40-368	C5	Q40	40	368	344	348	5000	4,3
	★ A3000-C6-Q25-130	C6	Q25	25	130	102	105	10000	1,3
	★ A3000-C6-Q25-180	C6	Q25	25	180	152	155	8000	1,5
	★ A3000-C6-Q25-230	C6	Q25	25	230	202	205	6000	1,7
	A3000-C6-Q32-160	C6	Q32	32	160	129	135	10000	1,8
	A3000-C6-Q32-224	C6	Q32	32	224	193	199	8000	2,1
	A3000-C6-Q32-288	C6	Q32	32	288	257	263	6000	2,6
	A3000-C6-Q40-208	C6	Q40	40	208	177	183	8000	2,9
	A3000-C6-Q40-288	C6	Q40	40	288	257	263	6000	3,7
	A3000-C6-Q40-368	C6	Q40	40	368	337	343	5000	4,5
	A3000-C6-Q50-268	C6	Q50	50	268	238	243	6000	5
	A3000-C6-Q50-368	C6	Q50	50	368	338	343	4000	6,6
	A3000-C6-Q50-468	C6	Q50	50	468	438	443	2500	8,5
	A3000-C8-Q32-224	C8	Q32	32	224	181	191	8000	3,2
	A3000-C8-Q32-288	C8	Q32	32	288	245	255	6000	3,6
	A3000-C8-Q40-288	C8	Q40	40	288	245	255	6000	4,7
	A3000-C8-Q40-368	C8	Q40	40	368	325	335	5000	5,6
	A3000-C8-Q50-268	C8	Q50	50	268	225	235	6000	5,9
	A3000-C8-Q50-368	C8	Q50	50	368	325	335	4000	7,5
	A3000-C8-Q50-468	C8	Q50	50	468	425	435	2500	9,4

Режущие головки QuadFit — см. главу «Токарная обработка» Сборочные детали входят в комплект поставки

Сборочные детали	d ₁₁	Q25	Q32	Q40	Q50
	Ключ крючковый	SD9000-Q25	SD9000-Q32	SD9000-Q40	SD9000-Q50
	Момент затяжки	25 Нм	25 Нм	35 Нм	55 Нм

Комплектующие	d ₁₁	Q32	Q40	Q50
	Ключ динамометрический с крючком Момент затяжки	SD4000-Q32-25 25 Нм	SD4000-Q40-35 35 Нм	SD4000-Q50-55 55 Нм
	Крючок для динамометрического ключа	SD6000-Q32	SD6000-Q40	SD6000-Q50

Оправки HSK-T — антивибрационные

A3000-HSK-T mm

Accure-tec

- Для режущих головок QuadFit
- С предустановленным гашением вибраций

Инструмент	Обозначение	d ₁ мм	d ₁₁	d ₁₂ мм	I ₄	I ₁₆ мм	I ₁₇ мм	n _{max}	S kg
HSK-T DIN 69893-7	★ A3000-H63T-Q25-130	63	Q25	25	130	101	104	10000	1,1
, d ₁₂ a	★ A3000-H63T-Q25-180	63	Q25	25	180	151	154	8000	1,3
d ₁₁ d ₁ d ₁	★ A3000-H63T-Q25-230	63	Q25	25	230	201	204	6000	1,5
	★ A3000-H63T-Q32-160	63	Q32	32	160	128	134	10000	1,6
1 ₁₆	★ A3000-H63T-Q32-224	63	Q32	32	224	192	198	8000	2
117 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	★ A3000-H63T-Q40-208	63	Q40	40	208	176	182	8000	2,7
	★ A3000-H63T-Q40-288	63	Q40	40	288	256	262	6000	3,5
	★ A3000-H63T-Q50-268	63	Q50	50	268	241	242	6000	4,8
	★ A3000-H63T-Q50-368	63	Q50	50	368	341	342	4000	6,4
	A3000-H100T-Q32-224	100	Q32	32	224	189	195	8000	3,4
	A3000-H100T-Q32-288	100	Q32	32	288	253	259	6000	3,8
	A3000-H100T-Q40-288	100	Q40	40	288	253	259	6000	4,9
	A3000-H100T-Q40-368	100	Q40	40	368	333	339	5000	5,8
	A3000-H100T-Q50-268	100	Q50	50	268	234	239	6000	6,2
	A3000-H100T-Q50-368	100	Q50	50	368	334	339	4000	7,8
	A3000-H100T-Q50-468	100	Q50	50	468	434	439	2500	9,7

Сборочные детали входят в комплект поставки

Сборочные детали	d ₁₁	Q25	Q32	Q40	Q50
	Ключ крючковый	SD9000-Q25	SD9000-Q32	SD9000-Q40	SD9000-Q50
	Момент затяжки	25 Нм	25 Нм	35 Нм	55 Нм

Комплектующие	d ₁₁	Q32	Q40	Q50
	Ключ динамометрический с крючком Момент затяжки	SD4000-Q32-25 25 Нм	SD4000-Q40-35 35 Нм	SD4000-Q50-55 55 Нм
	Крючок для динамометрического ключа	SD6000-Q32	SD6000-Q40	SD6000-Q50

Режущая головка — крепление пластин прижимом повышенной жёсткости

Q...-DCLN mm

Walter Turn

- QuadFit
- Для расточных оправок Accure-tec

Инструмент	Обозначение	0	d_1	D _{min}	f MM	l ₄	Υ	λ_{S}	Тип
	Q32-DCLNR/L-22032-12	12	Q32	40	22	32	-6°	-10°	
QuadFit	Q40-DCLNR/L-27032-12	12	Q40	50	27	32	-6°	-10°	CN 1204
d ₁	Q50-DCLNR/L-32032-12	12	Q50	63	32	32	-6°	-8°	
f 95°	Q50-DCLNR/L-32037-16	16	Q50	63	32	37	-5°	-14°	CN 1606
4									
D _{min}									

Размеры указаны для эталонной пластины: CN .. 120408 / CN .. 160612

Передний угол γ (для пластин без стружколомающей геометрии) и угол наклона λ_S см. в разделе «Техническая информация. Токарная обработка ISO» Пример заказа инструмента правого исполнения: Q32-DCLNR-22032-12 / пример заказа инструмента левого исполнения: Q32-DCLNL-22032-12 Сборочные детали входят в комплект поставки

Сборочные детали	Тип	CN 1204	CN 1606
	Опорная пластина	AP354-CN12	AP302-CN16
	Винт опорной пластины Момент затяжки	FS1461 (Torx 15IP) 2,5 Hm	FS1463 (Torx 20IP) 5,0 Нм
	Прижим	PK241	PK242
	Винт Момент затяжки	FS1473 (Torx 15IP) 3,9 HM	FS1474 (Torx 20IP) 6,4 Hm
W	Пружина	FS1470	FS1471
	Штифт	RS117	RS117
	Ключ	FS1465 (Torx 15IP /SW 3,5)	FS1464 (Torx 20IP)

Комплектующие	Тип	CN 1204	CN 1606
	Узел крепления (стандартный)	PK241-SET	PK242-SET
	Узел крепления с твердосплавным башмаком Пластины с отверстием	PK245-SET	PK246-SET
	Узел крепления с твердосплавным башмаком Пластины без отверстия	PK254-SET	

Режущая головка крепление пластин прижимом повышенной жёсткости

Q...-DDUN mm

Walter Turn

- QuadFit
- Для расточных оправок Accure-tec

93° ≤ 30°

Инструмент	Обозначение		d_1	D _{min}	f MM	l ₄	Υ	λ_{s}	Тип
	★ Q32-DDUNR/L-22032-11	11	Q32	40	22	32	-6°	-10°	DN 1104
QuadFit	★ Q40-DDUNR/L-27032-11	11	Q40	50	27	32	-5°	-10°	J DIN 1104
d ₁	Q32-DDUNR/L-22032-15	15	Q32	40	21,9	32	-6°	-14°	
f	Q40-DDUNR/L-27032-15	15	Q40	50	27	32	-6°	-12°	DN 1506
93°	Q50-DDUNR/L-32032-15	15	Q50	63	32	32	-6°	-12°	
Dmin									

Размеры указаны для эталонной пластины: DN .. 110408 / DN .. 150608

Передний угол ү (для пластин без стружколомающей геометрии) и угол наклона $\lambda_{\rm S}$ см. в разделе «Техническая информация. Токарная обработка ISO» Пример заказа инструмента правого исполнения: Q32-DDUNR-22032-11 / пример заказа инструмента левого исполнения: Q32-DDUNL-22032-11 Сборочные детали входят в комплект поставки

Сборочные детали			
соорочные детали	Тип	DN 1104	DN 1506
	Опорная пластина	AP305-DN11	AP304-DN15
	Винт опорной пластины Момент затяжки	FS1462 (Torx 9IP) 1,5 Hм	FS1461 (Torx 15IP) 2,5 HM
	Прижим	PK240	PK241
	Винт Момент затяжки	FS1472 (Torx 9IP) 1,7 HM	FS1473 (Torx 15IP) 3,9 Нм
W	Пружина	FS1469	FS1470
	Штифт	RS116	RS117
	Ключ	FS1466 (Torx 9IP)	FS1465 (Torx 15IP /SW 3,5)

Комплектующие	Тип	DN 1104	DN 1506
	Узел крепления с твердосплавным башмаком Пластины с отверстием		PK245-SET
	Узел крепления (стандартный)	PK240-SET	PK241-SET
	Узел крепления с твердосплавным башмаком Пластины без отверстия		PK254-SET
	Опорная пластина для DN 1504		AP304-DN1504

Режущая головка крепление пластин прижимом повышенной жёсткости

Q...-DWLN mm

Walter Turn

- QuadFit
- Для расточных оправок Accure-tec

Инструмент	Обозначение		d_1	D _{min}	f MM	l ₄	Υ	λ_{s}	Тип
	★ Q32-DWLNR/L-22032-06	6	Q32	40	22	32	-5°	-12°	WN 0604
QuadFit	Q32-DWLNR/L-22035-08	8	Q32	40	22	35	-5°	-14°	
d1	Q40-DWLNR/L-27037-08	8	Q40	50	27	37	-5°	-12°	WN 0804
95:	Q50-DWLNR/L-32038-08	8	Q50	63	32	38	-5°	-12°	1
14									
D _{min}									

Размеры указаны для эталонной пластины: WN .. 060408 / WN .. 080408

Пример заказа инструмента правого исполнения: Q32-DWLNR-22032-06 / пример заказа инструмента левого исполнения: Q32-DWLNL-22032-06 Сборочные детали входят в комплект поставки

Сборочные детали	Тип	WN 0604	WN 0804
	Опорная пластина	AP306-WN06	AP331-WN08
	Винт опорной пластины Момент затяжки	FS1462 (Torx 9IP) 1,5 Hм	FS1461 (Torx 15IP) 2,5 Hм
	Прижим	PK240	PK241
	Винт Момент затяжки	FS1472 (Torx 9IP) 1,7 Нм	FS1473 (Torx 15IP) 3,9 Нм
W	Пружина	FS1469	FS1470
	Штифт	RS116	RS117
	Ключ	FS1466 (Torx 9IP)	FS1465 (Torx 15IP /SW 3,5)

Комплектующие	Тип	WN 0604	WN 0804
	Узел крепления (стандартный)	PK240-SET	PK241-SET
	Узел крепления с твердосплавным башмаком Пластины с отверстием		PK245-SET
	Узел крепления с твердосплавным башмаком Пластины без отверстия		PK254-SET

Q...-SCLC mm

Walter Turn

- QuadFit
- Для расточных оправок Accure-tec

Инструмент	Обозначение	(O)	d_1	D _{min}	f MM	l ₄	γ	λ_{s}	Тип
	★ Q25-SCLCR/L-17020-09	9	Q25	32	17	20	0°	-3°	
QuadFit	Q32-SCLCR/L-22032-09	9	Q32	40	22	32	0°	-2°	CC 09T3
d ₁	Q40-SCLCR/L-27032-09	9	Q40	50	27	32	0°	-2°	1 CC 0913
f 95°	Q50-SCLCR/L-32032-09	9	Q50	63	32	32	0°	-2°]
	Q32-SCLCR/L-22032-12	12	Q32	40	22	32	0°	-8°	
l → l ₄ →	Q40-SCLCR/L-27032-12	12	Q40	50	27	32	0°	-8°	CC 1204
	Q50-SCLCR/L-32032-12	12	Q50	63	32	32	0°	-9°	
Dmin									
ns ns									

Размеры указаны для эталонной пластины: СС .. 09Т308 / СС .. 120408

Передний угол ү (для пластин без стружколомающей геометрии) и угол наклона $\lambda_{\rm S}$ см. в разделе «Техническая информация. Токарная обработка ISO» Пример заказа инструмента правого исполнения: Q25-SCLCR-17020-09 / пример заказа инструмента левого исполнения: Q25-SCLCL-17020-09 Сборочные детали входят в комплект поставки

Сборочные детали	Тип D _{min} [мм]	CC 09T3 32	CC 09T3 40-63	CC 1204 40-63
	Винт пластины Момент затяжки	FS1461 (Torx 15IP) 2,5 HM	FS2062 (Torx 15IP) 3,0 Нм	FS2281 (Torx 20IP) 5,0 Hм
	Опорная пластина			AP364-CC1208
	Винт опорной пластины			FS2592 (SW 5)
	Ключ	FS1465 (Torx 15IP /SW 3,5)	FS1465 (Torx 15IP /SW 3,5)	
	Ключ			FS1464 (Torx 20IP)
	Изогнутый ключ для опорной пластины			ISO2936-5 (SW 5)

Q...-SDUC mm

Walter Turn

- QuadFit
- Для расточных оправок Accure-tec

Инструмент	Обозначение		d_1	D _{min}	f MM	1 ₄	Υ	λ_{S}	Тип
	★ Q25-SDUCR/L-17020-11	11	Q25	32	17	20	0°	-6°	
QuadFit	Q32-SDUCR/L-22032-11	11	Q32	40	22	32	0°	-5°	DC 11T3
d ₁	Q40-SDUCR/L-27032-11	11	Q40	50	27	32	0°	-5°	1 DC 1113
f 93°-	Q50-SDUCR/L-32032-11	11	Q50	63	32	32	0°	-5°	
93									
 									
D _{min}									
*II-4' ''S									

Размеры указаны для эталонной пластины: DC .. 11T308

Передний угол γ (для пластин без стружколомающей геометрии) и угол наклона λ_S см. в разделе «Техническая информация. Токарная обработка ISO» Пример заказа инструмента правого исполнения: Q25-SDUCR-17020-11 / пример заказа инструмента левого исполнения: Q25-SDUCL-17020-11 Сборочные детали входят в комплект поставки

Сборочные детали	Тип	DC 11T3
	Винт пластины Момент затяжки	FS1461 (Torx 15IP) 2,5 HM
	Ключ	FS1465 (Torx 15IP /SW 3,5)

Q...-SDUC...-X mm

Walter Turn

- QuadFit
- Для расточных оправок Accure-tec

Инструмент	Обозначение		, d ₁	D _{min}	f MM	1 ₄	I ₂₀ мм	Х ₁	γ	λ_{S}	Тип
	★ Q25-SDUCR/L-17012-11X	11	Q25	32	17	12	24,5	4,5	0°	-6°	
QuadFit	Q32-SDUCR/L-22018-11X	11	Q32	40	21,9	18	37,5	5,9	0°	-5°	DC 11T3
d ₁	Q40-SDUCR/L-27017-11X	11	Q40	50	26,9	17	40,5	6,9	0°	-5°	DC 1113
f 93°	Q50-SDUCR/L-32017-11X	11	Q50	63	32	17	42,5	6,9	0°	-5°	
X ₁											
₄											
D _{min}											

Размеры указаны для эталонной пластины: DC .. 11T308

Передний угол ү (для пластин без стружколомающей геометрии) и угол наклона $\lambda_{\rm S}$ см. в разделе «Техническая информация. Токарная обработка ISO» Пример заказа инструмента правого исполнения: Q25-SDUCR-17012-11X / пример заказа инструмента левого исполнения: Q25-SDUCL-17012-11X Сборочные детали входят в комплект поставки

Сборочные детали	Тип	DC 11T3
	Винт пластины Момент затяжки	FS1461 (Torx 15IP) 2,5 HM
	Ключ	FS1465 (Torx 15IP /SW 3,5)

Q...-SDXC mm

Walter Turn

- QuadFit
- Для расточных оправок Accure-tec

Инструмент	Обозначение		d_1	D _{min}	f MM	l ₄	I ₂₀	Х ₁	Υ	λ_{S}	Тип
	★ Q25-SDXCR/L-17018-11	11	Q25	32	17	18	24,3	4,5	0°	-6°	
QuadFit	Q32-SDXCR/L-22025-11	11	Q32	40	21,9	25	37,5	5,9	0°	-5°	DC 11T3
d ₁	Q40-SDXCR/L-27025-11	11	Q40	50	26,9	25	40,5	6,9	0°	-5°	DC 1113
f 162°30/	Q50-SDXCR/L-32025-11	11	Q50	63	31,9	25	42,5	6,9	0°	-5°	
\downarrow											
 											
D _{min}											
*											

Размеры указаны для эталонной пластины: DC .. 11T308

Передний угол ү (для пластин без стружколомающей геометрии) и угол наклона $\lambda_{\rm S}$ см. в разделе «Техническая информация. Токарная обработка ISO» Пример заказа инструмента правого исполнения: Q25-SDXCR-17018-11 / пример заказа инструмента левого исполнения: Q25-SDXCL-17018-11 Сборочные детали входят в комплект поставки

Сборочные детали	Тип	DC 11T3
	Винт пластины Момент затяжки	FS1461 (Torx 15IP) 2,5 HM
		FS1465 (Torx 15IP /SW 3,5)

Q...-STFC mm

Walter Turn

- QuadFit
- Для расточных оправок Accure-tec

Инструмент	Обозначение		d_1	D _{min}	f MM	l ₄	γ	λ_{s}	Тип
	★ Q25-STFCR/L-17020-11	11	Q25	32	17	25,5	0°	-3°	TC 1102
QuadFit	Q32-STFCR/L-22032-16	16	Q32	40	22	32	0°	-10°	
d ₁	Q40-STFCR/L-27032-16	16	Q40	50	27	32	0°	-8°	TC 16T3
	Q50-STFCR/L-32032-16	16	Q50	63	32	32	0°	-8°	
1,91° O									
14									
D _{min}									
N _s									

Размеры указаны для эталонной пластины: ТС .. 110200 / ТС .. 16Т308

Передний угол ү (для пластин без стружколомающей геометрии) и угол наклона $\lambda_{\rm S}$ см. в разделе «Техническая информация. Токарная обработка ISO» Пример заказа инструмента правого исполнения: Q25-STFCL-17020-11 / пример заказа инструмента левого исполнения: Q25-STFCL-17020-11 Сборочные детали входят в комплект поставки

Сборочные детали	Тип	TC 1102	TC 16T3
	Винт пластины Момент затяжки	FS2061 (Torx 7IP) 0,9 Нм	FS2063 (Torx 15IP) 3,0 Нм
	Опорная пластина		AP317-TC1612 r ≤ 1,2 мм
	Винт опорной пластины		FS2068 (SW 3,5)
	Ключ	FS1490 (Torx 7IP)	FS1465 (Torx 15IP /SW 3,5)

Q...-SVUB mm

Walter Turn

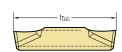
- QuadFit
- Для расточных оправок Accure-tec

Инструмент	Обозначение		d_1	D _{min}	f MM	l ₄	γ	λ_{s}	Тип
QuadFit	★ Q25-SVUBR/L-17020-11	11	Q25	32	17	20	0°	-4°	VB 1103 VC 1103
QuadFit d1	Q32-SVUBR/L-22032-16	16	Q32	40	22	32	0°	-3°	
	Q40-SVUBR/L-27032-16	16	Q40	50	26,9	32	0°	-3°	VB 1604 VC 1604
f 93°	Q50-SVUBR/L-32032-16	16	Q50	63	31,9	32	0°	-3°	701004
<u>₩</u> 93 4									
D _{min}									

Размеры указаны для эталонной пластины: VB .. 110304 / VB .. 160408 Передний угол ү (для пластин без стружколомающей геометрии) и угол наклона λ_s см. в разделе «Техническая информация. Токарная обработка ISO» Пример заказа инструмента правого исполнения: Q25-SVUBR-17020-11 / пример заказа инструмента левого исполнения: Q25-SVUBL-17020-11 . Сборочные детали входят в комплект поставки

Сборочные детали	Тип	VB 1103 VC 1103	VB 1604 VC 1604
	Винт пластины Момент затяжки	FS2061 (Torx 7IP) 0,9 Нм	FS2063 (Torx 15IP) 3,0 Нм
	Опорная пластина		AP316-VB1608 r ≤ 0,8 мм
	Винт опорной пластины		FS2068 (SW 3,5)
	Ключ	FS1490 (Torx 7IP)	FS1465 (Torx 15IP /SW 3,5)

Обзор программы пластин и сплавов: обработка канавок


Пластины		
Форма пластины	Описание	Стр.
отрезка/ обработка канавок		
DX	Канавочные пластины Walter Cut DX с 2 режущими кромками	45
GX	Канавочные пластины Walter Cut GX с 2 или 1 режущей кромкой	48

Сплав: твёрдый сплав Область применения материалов Покрытие 05 45 CVD WKP13S CVD WKP23S CVD WKP33S ISO P PVD WSM23S PVD WSM33S PVD WSM43S PVD WSM13S PVD WSM23S ISO M PVD PVD WSM43S CVD WKP13S ISO K CVD WKP23S CVD WKP33S WK1 ISO N PCD WDN10 PVD WSM13S PVD WSM23S ISO S PVD WSM33S PVD WSM43S CBN WBS10 ISO H CBN WBH20 Износостойкость Прочность

Отрезка и обработка канавок Режущие пластины DX

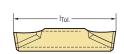
Tiger-tec® Silver

DX...N

Пластины

									F	Р	-	М		K		S			
									Н	IC	H	НС		нс	ſ	НС			
	Обозначение	S MM	r MM	к	I MM	f MM	S _{Tol}	I _{Tol}	WKP23S	WKP33S	WSM23S	WSM33S	WSM43S	WKP23S	WSM23S	WSM33S	WSM43S		
	DX18-1E150N01-CF6	1,5	0,15		18	0,03-0,12	±0,05	±0,15			•		23		((2)	33		
	DX18-2E200N02-CF6	2	0,2		18	0,03-0,14	±0,05	±0,15							((2)	33		
	DX18-2E250N02-CF6	2,5	0,2		18	0,03-0,18	±0,05	±0,15								(2)	23		
	DX18-3E300N02-CF6	3	0,2		18	0,04-0,23	±0,05	±0,15			•				(33		
	DX18-1E150L10-CF6	1,5	0	10°	18	0,03-0,10	±0,05	±0,15			•				(
	DX18-2E200L6-CF6	2	0,2	6°	18	0,03-0,12	±0,05	±0,15								(2)	23		
	DX18-2E200L15-CF6	2	0	15°	18,3	0,03-0,13	±0,05	±0,15			•				-			T	
	DX18-2E250L6-CF6	2,5	0,2	6°	18	0,03-0,15	±0,05	±0,15			_				-			\top	
	DX18-3E300L6-CF6	3	0,2	6°	18	0,04-0,19	±0,05	±0,15				*			-			\top	_
100	DX18-1E150R10-CF6	1,5	0	10°	18	0,03-0,10	±0,05	±0,15			_				_			\top	_
	DX18-2E200R6-CF6	2	0,2	6°	18	0,03-0,12	±0,05	±0,15			-						33	\top	_
	DX18-2E200R15-CF6	2	0	15°	18,3	0,03-0,13	±0,05	±0,15			_				_			\top	_
	DX18-2E250R6-CF6	2,5	0,2	6°	18	0,03-0,15	±0,05	±0,15			-				-	*		\top	_
	DX18-3E300R6-CF6	3	0,2	6°	18	0,04-0,19	±0,05	±0,15			_				\rightarrow			\top	_
100	DX18-1E150N01-CF5	1,5	0,15		18	0,03-0,12	±0,05	±0,15			9		33		9	$\overline{}$	23	\exists	_
	DX18-2E200N00-CF5	2	0		18	0,03-0,12	±0,05	±0,15							\rightarrow				_
	DX18-2E200N02-CF5	2	0,2		18	0,04-0,14	±0,05	±0,15			9		33		®	\rightarrow	23	\top	_
	DX18-2E250N02-CF5	2,5	0,2		18	0,05-0,18	±0,05	±0,15			_		_		_			T	_
	DX18-3E300N02-CF5	3	0,2		18	0,08-0,23	±0,05	±0,15			®		23		®	-			_
100	DX18-1E150L10-CF5	1,5	0	10°	18	0,03-0,06	±0,05	±0,15			•				$\overline{}$			\exists	_
	DX18-2E200L6-CF5	2	0,2	6°	18	0,03-0,12	±0,05	±0,15					33		_	(2)	23	\exists	_
	DX18-2E200L7-CF5	2	0	7°	18	0,03-0,12	±0,05	±0,15			®			(3	_			_
	DX18-2E200L15-CF5	2	0	15°	18	0,03-0,12	±0,05	±0,15			_					(2)		\exists	_
	DX18-2E250L6-CF5	2,5	0,2	6°	18	0,03-0,15	±0,05	±0,15							-	(2)			
	DX18-3E300L6-CF5	3	0,2	6°	18	0,04-0,19	±0,05	±0,15			•								_
	DX18-3E300L7-CF5	3	0	7°	18,8	0,04-0,16	±0,05	±0,15			•				(_
	DX18-3E300L15-CF5	3	0	15°	18,8	0,04-0,16	±0,05	±0,15			_							\top	_
30	DX18-1E150R10-CF5	1,5	0	10°	18	0,03-0,06	±0,05	±0,15			_				_			\exists	_
	DX18-2E200R6-CF5	2	0,2	6°	18	0,03-0,12	±0,05	±0,15			•				-		33		_
	DX18-2E200R7-CF5	2	0	7°	18	0,03-0,12	±0,05	±0,15			®	-		(©	-		\top	
	DX18-2E200R15-CF5	2	0	15°	18	0,03-0,12	±0,05	±0,15								29		\top	_
	DX18-2E250R6-CF5	2,5	0,2	6°	18	0,03-0,15	±0,05	±0,15										\top	
	DX18-3E300R6-CF5	3	0,2	6°	18	0,04-0,19	±0,05	±0,15			_	29			_			\top	_
	DX18-3E300R7-CF5	3	0	7°	18,8	0,04-0,16	±0,05	±0,15			_				-			\top	
	DX18-3E300R15-CF5	3	0	15°	18,8	0,04-0,16	±0,05	±0,15										\top	_
1	DX18-1E150N01-CE4	1,5	0,15		18	0,03-0,12	±0,05	±0,15			_		33		$\overline{}$	(2)	23	\top	_
	DX18-2E200N02-CE4	2	0,2		18	0,06-0,17	±0,05	±0,15	•		9			3				\top	_
	DX18-2E250N02-CE4	2,5	0,2		18	0,07-0,21	±0,05	±0,15	•		-	\rightarrow	33	_	-			\top	_
	DX18-3E300N02-CE4	3	0,2		18	0,09-0,33	±0,05	±0,15	•		3							\top	_

 $I_{Tol} =$ точность позиционирования при смене пластин одной партии Допуск на радиус $r_{Tol} = \pm 0.05$ мм

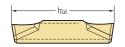

НС = твёрдый сплав с покрытием

Отрезка и обработка канавок Режущие пластины DX

Tiger-tec® Silver

Іластины																	
									ı	Р	М			к	S		
									Н	IC	١,	HC		НС	H	2	
	Обозначение	S MM	r MM	к	I MM	f MM	S _{Tol}	I _{Tol}	WKP23S	WKP33S	WSM23S	WSM33S	WSM43S	WKP23S	WSM33S	WSM43S	
A Section	DX18-2E200L6-CE4	2	0,2	6°	18	0,04-0,12	±0,05	±0,15							E	23	
	DX18-2E250L6-CE4	2,5	0,2	6°	18	0,05-0,15	±0,05	±0,15							€		Г
1	DX18-3E300L6-CE4	3	0,2	6°	18	0,09-0,27	±0,05	±0,15							€	23	Г
1	DX18-2E200R6-CE4	2	0,2	6°	18	0,04-0,12	±0,05	±0,15							€	23	
	DX18-2E250R6-CE4	2,5	0,2	6°	18	0,05-0,15	±0,05	±0,15							€		
	DX18-3E300R6-CE4	3	0,2	6°	18	0,09-0,27	±0,05	±0,15							€	23	
130	DX18-2E200N02-GD3	2	0,2		18	0,04-0,15	±0,05	±0,15				33			1		
	DX18-2E250N02-GD3	2,5	0,2		18	0,04-0,17	±0,05	±0,15							ă		
	DX18-3E300N03-GD3	3	0,3		18	0,06-0,21	±0,05	±0,15					(ă		
100	DX18-2E200N02-GD6	2	0,2		18	0,04-0,14	±0,05	±0,15			®				9 @		
	DX18-2E250N02-GD6	2,5	0,2		18	0,06-0,20	±0,05	±0,15			®	\rightarrow		_	9 @	_	
	DX18-3E300N03-GD6	3	0,2		18	0,08-0,21	±0,05	±0,15			®			9	9 @		
																	L

 $I_{\text{ToI}} =$ точность позиционирования при смене пластин одной партии Допуск на радиус $r_{\text{ToI}} = \pm 0.05$ мм


НС = твёрдый сплав с покрытием

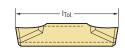
Обработка канавок и продольное точение Режущие пластины DX

Tiger-tec® Silver

DX...N

Іластины																														
										P HC															M IC	K		S HC		
	Обозначение	S MM	r MM	I MM	f MM	а _р мм	S _{Tol}	I _{Tol}	WKP13S	WKP23S	WKP33S	WSM23S	WSM33S WSM43S	WKP23S	WSM23S	WSM33S	WSM43S													
	DX18-2E200N02-UF4	2	0,2	18	0,10-0,18	0,3-1,2	±0,05	±0,15				49 (13 21	}		33	33	_												
	DX18-2E250N02-UF4	2,5	0,2	18	0,10-0,21	0,3-1,3	±0,05	±0,15				69 (1			33														
	DX18-3E300N03-UF4	3	0,3	18	0,10-0,23	0,4-2,0	±0,05	±0,15		(29		(2)	13 21	}	49	33	23	_												
1	DX18-2E200N02-UD4	2	0,2	18	0,10-0,18	0,3-1,2	±0,05	±0,15					(4	49																
-	DX18-3E300N03-UD4	3	0,3	18	0,10-0,23	0,4-2,0	±0,05	±0,15		49			(2)	(3)		(2)														
																		_												
	DX18-2E200N02-UA4	2	0,2	18	0,08-0,18	0,3-1,2	±0,05	±0,15	•									_												
	DX18-3E300N03-UA4	3	0,3	18	0,10-0,25	0,4-2,0	±0,05	±0,15	®		(4)																			
												_		_		-	\rightarrow	_												

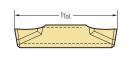
 $I_{Tol} =$ точность позиционирования при смене пластин одной партии Допуск на радиус $r_{Tol} = \pm 0.05$ мм


НС = твёрдый сплав с покрытием

DX...N

Обработка канавок и профильная обработка Режущие пластины DX

Tiger-tec® Silver


Пластины																		
										P IC		M IC	K		S HC			T
	Обозначение	S MM	r MM	I MM	f MM	а _р мм	S _{Tol}	I _{Tol} MM	WKP23S	WKP33S	WSM23S	WSM33S	WKP23S	WSM23S	WSM33S	WSM43S		
100	DX18-2E200N10-RF7	2	1	18,3	0,08-0,26	0,1-1,0	±0,05	±0,15									\Box	
0	DX18-3E300N15-RF7	3	1,5	18,3	0,10-0,36	0,1-1,5	±0,05	±0,15			(3)			(29			7	+
																	-	
	DX18-2E200N10-RD4	2	1	18,3	0,08-0,28	0,2-1,0	±0,05	±0,15	•		•	(4	(3)				\neg	
	DX18-3E300N15-RD4	3	1,5	18,3	0,10-0,38	0,5-1,5	±0,05	±0,15			@	(4		•			\exists	
																	7	Ŧ

 $I_{\text{ToI}} =$ точность позиционирования при смене пластин одной партии Допуск на радиус $r_{\text{ToI}} = \pm 0.05$ мм

НС = твёрдый сплав с покрытием

Обработка канавок и профильная обработка Режущие пластины GX

Tiger-tec® Silver

Пластины																				
											P HC				M		K HC		S HC	
	Обозначение	S MM	r MM	I MM	f MM	а _р мм	S _{Tol}	I _{Tol}	WKP23S	WSM13S	WSM23S	WSM33S	WSM43S	WSM13S	- 1	1		WSM13S	WSM23S	1
	GX24-2E300N15-RF7	3	1,5	24	0,10-0,33	0,1-1,5	±0,05	±0,15		•				3				•	29	
	GX24-3E400N20-RF7	4	2	24	0,12-0,48	0,1-2,0	±0,05	±0,15		•				3				0	(2)	
	GX24-3E500N25-RF7	5	2,5	24	0,12-0,53	0,1-2,5	±0,05	±0,15		®				3				9		
	GX24-2F300N15-RF7	3	1,5	24	0,10-0,33	0,1-1,5	±0,05	±0,15						3				®		
	GX24-3F400N20-RF7	4	2	24	0,12-0,48	0,1-2,0	±0,05	±0,15						3				®		
0	GX24-3F500N25-RF7	5	2,5	24	0,12-0,53	0,1-2,5	±0,05	±0,15						3				•		
100																				

 $|_{T_0|}$ = точность позиционирования при смене пластин одной партии Допуск на радиус $r_{T_0|} = \pm 0.05$ мм

НС = твёрдый сплав с покрытием

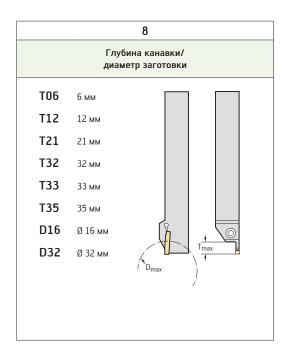
Обзор программы державок Walter Cut для обработки торцевых канавок Державки / отрезные лезвия / расточные державки

Вид обработки		1		1					
Тип									
Обозначение	G4014	G4014P	G4011	G4011P	G4041	G4041P			
Ширина канавки, s [мм]	1,5-3	2–3	2–3	2–3	1,5-3	2			
Глубина канавки, T _{max} [мм]	10-18	12-18	10-17	17	17-21	17-21			
Подвод СОЖ	Наружный	Направленный	Наружный	Направленный	Наружный	Направленный			
Сечение хвостовика, h [мм]	10-20	12-20	25	25	26-32	26-32			
Сечение хвостовика, h [дюйм]	0,394-0,787	0,472-0,787	0,984-1,000	0,984-1,000	1,024-1,260	1,024-1,260			
Стр.	52	53	59	60	63	64			
	1								

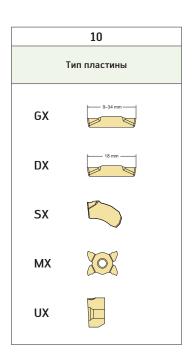
Вид обработки	1	1						
Тип								
Обозначение	G4041C	G4041C-P						
Ширина канавки, s [мм]	1,5-3	2						
Глубина канавки, T _{max} [мм]	17-21	17						
Подвод СОЖ	Наружный	Направленный						
Сечение хвостовика, h [мм]	26-32	26						
Сечение хвостовика, h [дюйм]	1,024-1,260	1,024						
Стр.	65	66						

Система обозначений державок Walter Cut для отрезки и обработки канавок

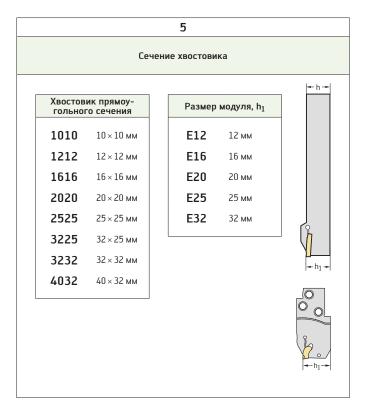
Пример:

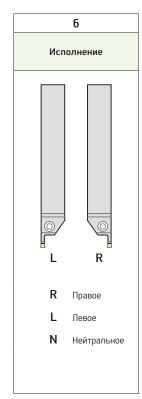


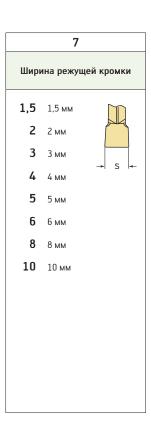
1										
Назначение инструмента										
G Обработка канавок										

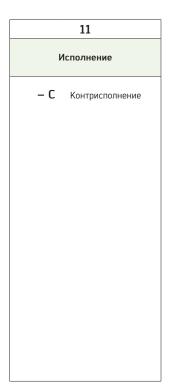

-	2
Се	рия
1	GX
2	SX / UX
3	MX
4	DX

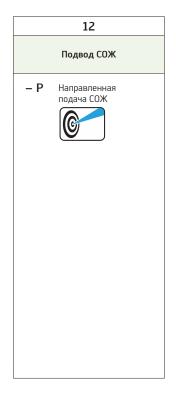
	3
	Тип инструмента
0	Державка для обработки радиальных канавок
1	Державка для обработки торцевых канавок
5	Державка без поддержки, для неглубоких канавок
6	Модульная державка для наружной радиальной обработки


	4								
Тип инструмента									
11	Под углом 0°, крепление винтом								
12	Под углом 0°, самозажимное крепление								
14	Под углом 0°, крепление винтом сбоку (SmartLock)								
16	Под углом 0°, крепление винтом спереди								
21	Под углом 90°, крепление винтом								
22	Под углом 90°, самозажимное крепление								
32	Модуль, самозажимное крепление								
41	Отрезное лезвие, зажимной винт								
42	Отрезное лезвие, самозажимное крепление								
51	Под углом, крепление винтом								
61	Составная державка								









G4014 mm

Walter Cut

– Боковое крепление винтом

Инструмент		Обозначение	S MM	D _{max}	h = h ₁	b MM	f ₁ мм	I ₁ мм	h ₄	1 ₄	Тип		
		G4014-1010R/L-1.5T10DX18		20	10	10	9,4	110	4	21			
SmartLock		G4014-1212R/L-1.5T12DX18	1,5	25	12	12	11,4	110	3	22	DX18-1E1		
		G4014-1616R/L-1.5T12DX18		25	16	16	15,4	120	4	24			
	s₁ →	G4014-1010R/L-2T10DX18		20	10	10	9,2	110	4	21			
<u></u> + h →	← b →	G4014-1212R/L-2T12DX18	2	25	12	12	11,2	110	3	22	DX18-2E2		
	1 1	G4014-1616R/L-2T12DX18		25	16	16	15,2	120	4	24			
		G4014-1616R/L-3T17DX18	3	35	16	16	14,8	120	4	30	DX18-3E3		
		G4014-2020R/L-3T17DX18	٦	35	20	20	18,8	120	3	30	DVIO-2E2 "		
→ - h ₄													
J [
14 PD													
D _{max} /	S -												
	- f ₁												
 h1 - 	← f →												

 $\overline{f = f_1 + s/2}$

Пример заказа инструмента правого исполнения: G4014-1010R-1.5T10DX18 / пример заказа инструмента левого исполнения: G4014-1010L-1.5T10DX18 Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [мм]	10-12	16-20
	Винт пластины Момент затяжки	FS2586 (Torx 15IP) 2,0 Нм	FS2585 (Torx 15IP) 3,0 Нм
	Винт запорный	FS2589	FS2589
	Ключ	FS1465 (Torx 15IP /SW 3,5)	FS1465 (Torx 15IP /SW 3,5)

Комплектующие	h = h ₁ [мм]	10-20
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2003 1,5-5,0 Нм
	Вставка	FS2014 (Torx 15IP)

G4014...-P mm

Walter Cut

- Боковое крепление винтом
- Направленная подача СОЖ

Инструмент	г	Обозначение	S MM	D _{max}	h = h ₁	b mm	f ₁	I ₁ мм	h ₄	l ₄	Тип
		G4014-1212R/L-2T12DX18-P	2	25	12	12	11,2	110	3	22	DX18-2E2
SmartLock		G4014-1212R/L-2.5T12DX18-P	2,5	25	12	12	11	110	3	22	DX10-2L2
- -h->	S1	G4014-1212R/L-3T12DX18-P	3	25	12	12	10,8	110	3	22	DX18-3E3
M8x1	→ b →										
	M8x1										
D _{max}	S-= 4- 										

 $f = f_1 + s/2$

Набор для подключения системы подачи СОЖ с резьбой G 1/8" см. в разделе «Сборочные детали и комплектующие»

Максимальное рекомендованное давление СОЖ составляет 150 бар

Пример заказа инструмента правого исполнения: G4014-1212R-2T12DX18-P / пример заказа инструмента левого исполнения: G4014-1212L-2T12DX18-P / Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [мм]	12
	Винт пластины Момент затяжки	FS2586 (Torx 15IP) 2,0 Hm
	Винт запорный	FS2589
	Пробка резьбовая М8Х1	FS2587
		FS1465 (Torx 15IP /SW 3,5)

Комплектующие	h = h ₁ [мм]	12
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2003 1,5-5,0 Нм
C	Вставка	FS2014 (Torx 15IP)
	Элемент угловой соединительный М8х1	FS2596
	Элемент соединительный М8х1	FS2597
	Кольцо медное уплотнительное	FS2598

G4014...-P mm

Walter Cut

- Боковое крепление винтом
- Направленная подача СОЖ

Инструмент		Обозначение	S MM	D _{max}	h = h ₁	b мм	f ₁	I ₁ мм	h ₄	1 ₄	Тип
		G4014-1616R/L-2T12DX18-P	2	25	16	16	15,2	120	4	24	
SmartLock	0	G4014-1616R/L-2T17DX18-P		35	16	16	15,2	120	4	30	DX18-2E2
S1-	-	G4014-1616R/L-2.5T17DX18-P	2,5	35	16	16	15	120	4	30	
G1/8" → - b		G4014-1616R/L-3T17DX18-P	3	35	16	16	14,8	120	4	30	DX18-3E3
Dmax s - f ₁ + f ₁	G1/8"										

 $f = f_1 + s/2$

1 – 1 + 3/2 Набор для подключения системы подачи СОЖ с резьбой G 1/8" см. в разделе «Сборочные детали и комплектующие» Максимальное рекомендованное давление СОЖ составляет 150 бар Пример заказа инструмента правого исполнения: G4014-1616R-2T12DX18-P / пример заказа инструмента левого исполнения: G4014-1616L-2T12DX18-P Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [мм]	16
	Винт пластины Момент затяжки	FS2585 (Torx 15IP) 3,0 Нм
	Винт запорный	FS2589
	Пробка резьбовая G 1/8"	FS2258 (SW 5)
	Ключ	FS1465 (Torx 15IP /SW 3,5)

Комплектующие	h = h ₁ [мм]	16
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2003 1,5–5,0 Нм
C	Вставка	FS2014 (Torx 15IP)

G4014...-P mm

Walter Cut

- Боковое крепление винтом
- Направленная подача СОЖ

Инструмент		Обозначение	S MM	D _{max}	h = h ₁	b MM	f ₁	I ₁ мм	h ₄	I ₄	Тип
	o l	G4014-2020R/L-2T17DX18-P	2	35	20	20	19,2	120	3	30	DX18-2E2
SmartLock		G4014-2020R/L-3T17DX18-P	3	35	20	20	18,8	120	3	30	DX18-3E3
 - h - 	S ₁ -										
G1/8" +	← b →										
Dmax	G1/8"										
	1 . 1										

 $f=f_1+s/2$

1 – 1 + 3/2 Набор для подключения системы подачи СОЖ с резьбой G 1/8" см. в разделе «Сборочные детали и комплектующие» Максимальное рекомендованное давление СОЖ составляет 150 бар Пример заказа инструмента правого исполнения: G4014-2020R-2T17DX18-P / пример заказа инструмента левого исполнения: G4014-2020L-2T17DX18-P Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [мм]	20
	Винт пластины Момент затяжки	FS2585 (Torx 15IP) 3,0 Нм
	Винт запорный	FS2589
	Пробка резьбовая G 1/8"	FS2258 (SW 5)
	Пробка резьбовая Мб	FS2288 (SW 3)
	Ключ	FS1465 (Torx 15IP /SW 3,5)

Комплектующие	h = h ₁ [мм]	20
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2003 1,5-5,0 Нм
C	Вставка	FS2014 (Torx 15IP)

G4014 inch

Walter Cut

– Боковое крепление винтом

Инструмент		Обозначение	s дюйм	D _{max} дюйм	h = h ₁ дюйм	b дюйм	f ₁ дюйм	I ₁ дюйм	h ₄ дюйм	I ₄ дюйм	Тип
SmartLock		G4014.08R/L-1.5T12DX18	0,059	0,984	0,500	0,500	0,476	4,331	0,091	0,866	DX18-1E1
	s ₁ -										
← h →	b										
-► h ₄											
14											
D _{max} /	s → f ₁ →										
 h1 	← f →										

 $\overline{f = f_1 + s/2}$

Пример заказа инструмента правого исполнения: G4014.08R-1.5T12DX18 / пример заказа инструмента левого исполнения: G4014.08L-1.5T12DX18 Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [дюйм]	0,500
	Винт пластины Момент затяжки	FS2586 (Torx 15IP) 2,0 Нм
	Винт запорный	FS2589
	Ключ	FS1465 (Torx 15IP /SW 3,5)

Комплектующие	h = h ₁ [дюйм]	0,500
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2003 1,5-5,0 Нм
	Вставка	FS2014 (Torx 15IP)

Державки для обработки радиальных канавок G4014...-P inch

– Боковое крепление винтом

Walter Cut

– Направленная подача СОЖ

Инструмент	г	Обозначение	s дюйм	D _{max} дюйм	h = h ₁ дюйм	b дюйм	f ₁ дюйм	l ₁ дюйм	h ₄ дюйм	I ₄ дюйм	Тип
		G4014.08R/L-2T12DX18-P	0,079	0,984	0,500	0,500	0,469	4,331	0,091	0,866	DX18-2E2
SmartLock		G4014.08R/L-3T12DX18-P	0,118	0,984	0,500	0,500	0,453	4,331	0,091	0,866	DX18-3E3
5/16"-24 UNF	S ₁ -										
	→ b →										
h-											
	5/										
	5/16"										
	24 U										
h ₄											
	المتعرب										
14											
D _{max}	S- -	_									
-h₁-	f1-> 										
1 - 11 - 1	1.1.1										

Максимальное рекомендованное давление СОЖ составляет 150 бар

Пример заказа инструмента правого исполнения: G4014.08R-2T12DX18-P / пример заказа инструмента левого исполнения: G4014.08L-2T12DX18-P Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [дюйм]	0,500
	Винт пластины Момент затяжки	FS2586 (Torx 15IP) 2,0 Hm
	Винт запорный	FS2589
	Пробка резьбовая UNF 5/16-24	FS2593
	Ключ	FS1465 (Torx 15IP /SW 3,5)

Комплектующие	h = h ₁ [дюйм]	0,500
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2003 1,5-5,0 Нм
C	Вставка	FS2014 (Torx 15IP)
	Элемент угловой соединительный 5/16" UNF	FS2594
	Элемент соединительный 5/16" UNF	FS2597
	Кольцо медное уплотнительное	FS2598

G4014...-P inch

Walter Cut

- Боковое крепление винтом
- Направленная подача СОЖ

Инструмент		Обозначение	s дюйм	D _{max} дюйм	h = h ₁ дюйм	b дюйм	f ₁ дюйм	I ₁ дюйм	h ₄ дюйм	I ₄ дюйм	Тип
		G4014.10R/L-2T17DX18-P	0,079	1,378	0,625	0,625	0,594	4,724	0,161	1,181	DX18-2E2
SmartLock	,	★ G4014.12R/L-2T17DX18-P	0,073	1,378	0,750	0,750	0,717	4,724	0,118	1,181	DX10-ZLZ
L	\$1 -	G4014.10R/L-3T17DX18-P	0,118	1,378	0,625	0,625	0,579	4,724	0,161	1,181	DX18-3E3
<u></u> • n →	- b →	★ G4014.12R/L-3T17DX18-P	0,110	1,378	0,750	0,750	0,701	4,724	0,118	1,181	DATO SES
D _{max}	G1/8"										

 $f=f_1+s/2$

Максимальное рекомендованное давление СОЖ составляет 150 бар

Пример заказа инструмента правого исполнения: G4014.10R-2T17DX18-P / пример заказа инструмента левого исполнения: G4014.10L-2T17DX18-P Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [дюйм]	0,625	0,750
	Винт пластины Момент затяжки	FS2585 (Torx 15IP) 3,0 Нм	FS2585 (Torx 15IP) 3,0 Hm
	Винт запорный	FS2589	FS2589
	Пробка резьбовая G 1/8"	FS2258 (SW 5)	FS2258 (SW 5)
	Пробка резьбовая М6		FS2288 (SW 3)
	Ключ	FS1465 (Torx 15IP /SW 3,5)	FS1465 (Torx 15IP /SW 3,5)

Комплектующие	h = h ₁ [дюйм]	0,625-0,750
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2003 1,5-5,0 Нм
	Вставка	FS2014 (Torx 15IP)

G4011 mm

Walter Cut

– Крепление пластин винтом

Инструмент		Обозначение	S MM	T _{max}	D ₂	h = h ₁	b MM	f ₁	l ₁	1 ₄	S ₁	Тип
		★ G4011-2525R/L-2T10DX18	2	10		25	25	24,2	125	28	1,6	
		★ G4011-2525R/L-2T17DX18		17	35	25	25	24,2	125	33,5	1,6	DX18-2E2
		★ G4011-2525R/L-2.5T17DX18	2,5	17	35	25	25	24	125	33,5	2,1	
	s ₁ →	★ G4011-2525R/L-3T10DX18	3	10		25	25	23,8	125	28	2,4	DX18-3E3
← h →	← b →	★ G4011-2525R/L-3T17DX18	J	17	35	25	25	23,8	125	33,5	2,4	DX10-JLJ
	1											
↑ • • • • • • • • • • • • • • • • • • •												
4												
T _m .	ax											
	S											
D _{max} h ₁	← f ₁ →											

 $f = f_1 + s/2$

Eсли D_2 или D_{max} не указаны, то никаких ограничений по диаметру на инструменте нет. Пример заказа инструмента правого исполнения: G4011-2525R-2T10DX18 / пример заказа инструмента левого исполнения: G4011-2525L-2T10DX18 Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [мм]	25
	Винт пластины Момент затяжки	FS2118 (Torx 20IP) 5,0 Hm
	Ключ	FS1464 (Torx 20IP)

G4011...-P mm

Walter Cut

- Крепление пластин винтом
- Направленная подача СОЖ

Инструмент		Обозначение	S MM	T _{max}	D _{max}	h = h ₁	b mm	f ₁	l ₁	I ₄	s ₁	Тип
	5	★ G4011-2525R/L-2T17DX18-P	2	17	35	25	25	24,2	125	33,5	1,6	DX18-2E2
		★ G4011-2525R/L-2.5T17DX18-P	2,5	17	35	25	25	24	125	33,5	2,1	DXIO-ELE
		★ G4011-2525R/L-3T17DX18-P	3	17	35	25	25	23,8	125	33,5	2,4	DX18-3E3
 G1/8" 	s ₁ → ←											
G1/0												
M6												
M6												
↑												
C1/9"												
G1/8"												
14 T _m	ах											
+												
D _{max} ← h ₁ ←	s → -											
	← f →											

 $f = f_1 + s/2$ Если D_2 или D_{max} не указаны, то никаких ограничений по диаметру на инструменте нет. Максимальное рекомендованное давление СОЖ составляет 150 бар Пример заказа инструмента правого исполнения: G4011-2525R-2T17DX18-P / пример заказа инструмента левого исполнения: G4011-2525L-2T17DX18-P Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [мм]	25
	Винт пластины Момент затяжки	FS2118 (Torx 20IP) 5,0 Нм
	Пробка резьбовая G 1/8"	FS2258 (SW 5)
	Пробка резьбовая Мб	FS2288 (SW 3)
	Ключ	FS1464 (Torx 20IP)

Державки для обработки радиальных канавок G4011 inch

Walter Cut

– Крепление пластин винтом

Инструмент		Обозначение	s дюйм	T _{max} дюйм	D _{max} дюйм	h = h ₁ дюйм	b дюйм	f ₁ дюйм	I ₁ дюйм	I ₄ дюйм	s ₁ дюйм	Тип
		★ G4011.16R/L-2T10DX18	0,079	0,394		1,000	1,000	0,969	4,921	1,102	0,063	DX18-2E2
		★ G4011.16R/L-3T10DX18	0,118	0,394		1,000	1,000	0,953	4,921	1,102	0,094	DX18-3E3
		★ G4011.16R/L-3T17DX18	0,110	0,669	1,378	1,000	1,000	0,953	4,921	1,319	0,094	DATO-JEJ
	s₁ →											
← h →	← b →											
	1											
	11											
↑ 6 11 e												
4												
T _m ;	ax XE											
D _{max} h ₁	S											
→ h ₁	← f ₁ →											

 $f = f_1 + s/2$

Если \hat{D}_2 или \hat{D}_{max} не указаны, то никаких ограничений по диаметру на инструменте нет. Пример заказа инструмента правого исполнения: G4011.16R-2T10DX18 / пример заказа инструмента левого исполнения: G4011.16L-2T10DX18 Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [дюйм]	1,000
	Винт пластины Момент затяжки	FS2118 (Torx 20IP) 5,0 Hm
	Ключ	FS1464 (Torx 20IP)

G4011...-P inch

Walter Cut

- Крепление пластин винтом
- Направленная подача СОЖ

G1/8"		Обозначение	s дюйм	T _{max} дюйм	D _{max} дюйм	h = h ₁ дюйм	b дюйм	f ₁ дюйм	I ₁ дюйм	I ₄ дюйм	s ₁ дюйм	Тип
G1/8" + h - S1	3	★ G4011.16R/L-2T17DX18-P	0,079	0,669	1,378	1,000	1,000	0,969	4,921	1,319	0,063	DX18-2E2
G1/8"		★ G4011.16R/L-3T17DX18-P	0,118	0,669	1,378	1,000	1,000	0,953	4,921	1,319	0,094	DX18-3E3
	s ₁ →											
	- b →											
M6 + G1/8" Tmax Tmax	1 1											

 $f=f_1+s/2$ Если D_2 или D_{max} не указаны, то никаких ограничений по диаметру на инструменте нет.

Максимальное рекомендованное давление СОЖ составляет 150 бар Пример заказа инструмента правого исполнения: G4011.16R-2T17DX18-P / пример заказа инструмента левого исполнения: G4011.16L-2T17DX18-P Сборочные детали входят в комплект поставки

Сборочные детали	h = h ₁ [дюйм]	1,000
	Винт пластины Момент затяжки	FS2118 (Torx 20IP) 5,0 Нм
	Пробка резьбовая G 1/8"	FS2258 (SW 5)
	Пробка резьбовая М6	FS2288 (SW 3)
	Ключ	FS1464 (Torx 20IP)

Отрезные лезвия для глубоких канавок

G4041 mm

Walter Cut

– Крепление пластин винтом

Инструмент		Обозначение	S MM	T _{max}	D _{max}	h ₄	I ₁ мм	h ₁	S ₁	Тип
		★ G4041-26R/L-1.5T17DX18	1,5	17	35	26	110	21,3	1,2	DX18-1E1
		★ G4041-26R/L-2T17DX18	2	17	35	26	110	21,3	1,6	DX18-2E2
		★ G4041-32R-2T21DX18		21	42	32	110	25	2,5	DX10-2E2
	s ₁ -	★ G4041-26R/L-3T17DX18	3	17	35	26	110	21,3	2,5	DX18-3E3
← h ₄ →										
	1									
	I ₁									
[m;										
1										
T _{max}	41									
D _{max}	S									
← h ₁ →										

Пример заказа инструмента правого исполнения: G4041-26R-1.5T17DX18 / пример заказа инструмента левого исполнения: G4041-26L-1.5T17DX18 Сборочные детали входят в комплект поставки

Сборочные детали	h ₄ [мм]	26-32
	Винт пластины Момент затяжки	FS2164 (Torx 15IP) 3,5 HM

Комплектующие	h ₄ [мм]	26-32
	Отвёртка	FS1485 (Torx 15IP)

Отрезные лезвия для глубоких канавок

G4041...-P mm

Walter Cut

- Крепление пластин винтом
- Направленная подача СОЖ

Инструмент		Обозначение	S MM	T _{max}	D _{max}	h ₄	l ₁	h ₁ мм	S ₁	Тип
		★ G4041-26R/L-2T17DX18-P	2	17	35	26	110	21,3	1,6	DX18-2E2
	10	★ G4041-32L-2T21DX18-P		21	42	32	110	25	1,6	
← h ₄ →	S1 →									
114	1									
	11									
0										
<u> </u>	8									
T _{max}										
D _{max}	s									
bmax	0 -1 -									

Пример заказа инструмента правого исполнения: G4041-26R-2T17DX18-P / пример заказа инструмента левого исполнения: G4041-26L-2T17DX18-P Сборочные детали входят в комплект поставки

Сборочные детали	h ₄ [мм]	26-32
	Винт пластины Момент затяжки	FS2164 (Torx 15IP) 3,5 HM
Комплектующие	h ₄ [мм]	26-32
	Отвёртка	FS1485 (Torx 15IP)

Отрезные лезвия для глубоких канавок, контрисполнение

G4041...C mm

Walter Cut

– Крепление пластин винтом

Инструмент		Обозначение	S MM	T _{max}	D _{max}	h ₄	I ₁ мм	h ₁	s ₁	Тип
		★ G4041-26R/L-1.5T17DX18C	1,5	17	35	26	110	21,3	1,2	DX18-1E1
	ПП	★ G4041-26R/L-2T17DX18C	2	17	35	26	110	21,3	1,6	DX18-2E2
		★ G4041-32R/L-2T21DX18C		21	42	32	110	25	1,6	DX10-2L2
	s ₁ →	★ G4041-26R/L-3T17DX18C	3	17	35	26	110	21,3	2,5	DX18-3E3
← h ₄ →										
	I ₁									
) _										
, [<u>]</u>										
T _{max}										
D _{max}	S									
← h ₁ →										

Пример заказа инструмента правого исполнения: G4041-26R-1.5T17DX18C / пример заказа инструмента левого исполнения: G4041-26L-1.5T17DX18C Сборочные детали входят в комплект поставки

Сборочные детали	h ₄ [мм]	26-32
	Винт пластины Момент затяжки	FS2164 (Torx 15IP) 3,5 Hm

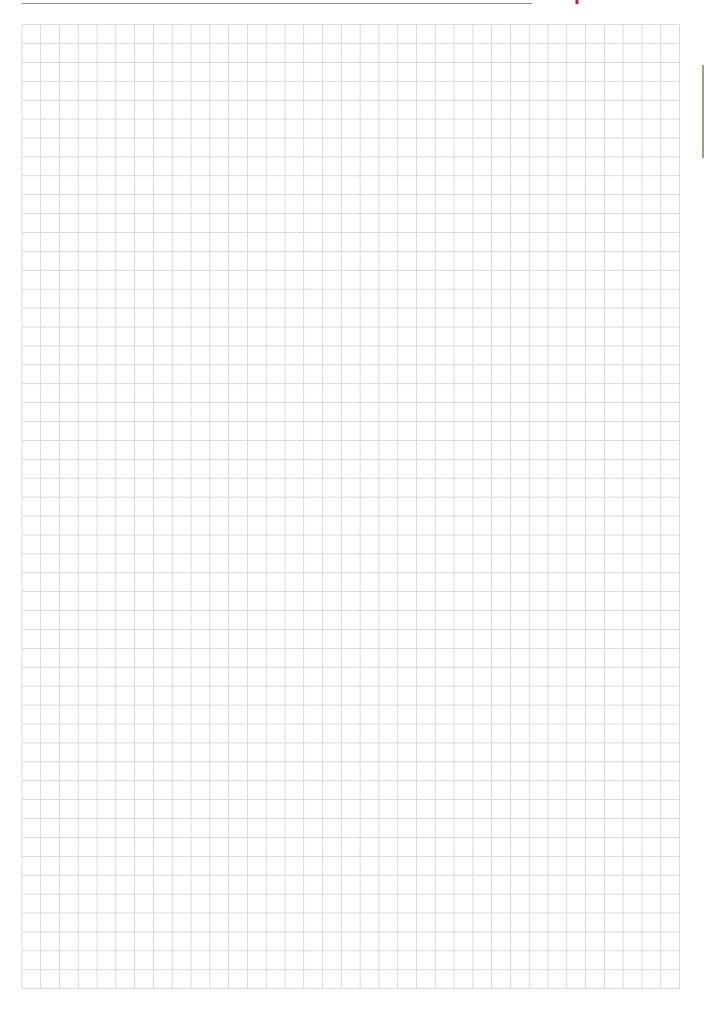
Комплектующие	h ₄ [мм]	26-32
	Отвёртка	FS1485 (Torx 15IP)

Отрезные лезвия для глубоких канавок, контрисполнение

G4041...C-P mm

Walter Cut

- Крепление пластин винтом
- Направленная подача СОЖ


Инструмент		Обозначение	S MM	T _{max}	D _{max}	h ₄	I ₁ мм	h ₁	S ₁	Тип
©	0	★ G4041-26R/L-2T17DX18C-P	2	17	35	26	110	21,3	1,6	DX18-2E2
la- ba -sl	s₁ →									
h4	·									
	11									
T _{max}										
D _{max} / - h ₁	s									

Пример заказа инструмента правого исполнения: G4041-26R-2T17DX18C-P / пример заказа инструмента левого исполнения: G4041-26L-2T17DX18C-P Сборочные детали входят в комплект поставки

Сборочные детали	h ₄ [мм]	26
	Винт пластины Момент затяжки	FS2164 (Torx 15IP) 3,5 HM

Комплектующие	h ₄ [мм]	26
	Отвёртка	FS1485 (Torx 15IP)

Обзор программы державок Walter NTS для резьбонарезания Державки для нарезания внутренней резьбы

Тип	NTS
Обозначение	QT1820P
Система зажима	Рычаг
Подвод СОЖ	Направленный
Размер QuadFit	Q25-Q50
Размер пластины	16-22
Стр.	69

Режущая головка для внутренней резьбы

Q...-T1820...-P mm

Walter NTS

- QuadFit
- Направленная подача СОЖ

Инструмент	Обозначение		d ₁	D _{min}	f MM	1 ₄	β	Тип
QuadFit	★ T1820-Q25R/L-16I-P	16	Q25	29	16,3	25	1°	
		16	Q32	36	19,8	32	1°	NTS-I16
	★ T1820-Q40R/L-16I-P	16	Q40	44	23,8	32	1°	T N13-110
	★ T1820-Q50R/L-16I-P	16	Q50	54	28,8	32	1°	
	★ T1820-Q32R/L-22I-P	22	Q32	38	21,3	32	1°	
	★ T1820-Q40R/L-22I-P	22	Q40	46	25,3	32	1°	NTS-I22
f D _{min}	★ T1820-Q50R/L-22I-P	22	Q50	56	30,3	32	1°	
14								
			_					

Угол наклона β и подходящую опорную пластину — см. «Техническая информация. Резьбонарезание»
Максимальное рекомендованное давление СОЖ составляет 150 бар
Пример заказа инструмента правого исполнения: T1820-Q25R-16I-P / пример заказа инструмента левого исполнения: T1820-Q25L-16I-P Сборочные детали входят в комплект поставки

Сборочные детали	Тип	NTS-I16	NTS-I22
	Опорная пластина	GXA16-1	NXA22-1
	Винт Момент затяжки	FS2615 (Torx 15IP) 2,0 HM	FS2616 (Torx 25IP) 5,0 HM
	Рычаг	KN129	KN130
	Штифт	RS123	RS124
	Ключ	FS1465 (Torx 15IP /SW 3,5)	
	Ключ		FS1592 (Torx 25IP)

Обзор геометрий токарных пластин без задних углов

Чистовая обработка												
		Группы материалов				лов						
F	05	Сталь 4	Нержавеющая сталь	К нулун	Цветные металлы Х	Жаропрочные сплавы	Материалы высокой Н твёрдости	Прочее О	Сечение по главной	Сечение по радиусу	- food	6 family
Геометрия	Область применения	0	Ι υ	7	_	χ υ	2 -	_	режущей кромке	при вершине	а _р [мм]	f [MM]
	 FW5 Чистовая обработка по технологии Wiper Двойная подача — стабильно высокое качество обработанной поверхности Сниженное усилие резания благодаря короткой криволинейной режущей кромке Wiper 	••	••	••		•			15° 0.1	0,12	0,3-3,0	0,10-0,60
Получист	овая обработка											
	 MW5 Получерновая обработка по технологии Wiper Двойная подача — стабильно высокое качество обработанной поверхности Максимальные значения подачи благодаря длинной криволинейной режущей кромке Wiper 	••	••	••		•			0,13	19° 0,16	0,8-4,0	0,15-0,75

- •• Основная область применения
- Возможная область применения

Примечание: на рисунках показаны сечения пластин CNMG120408 . .

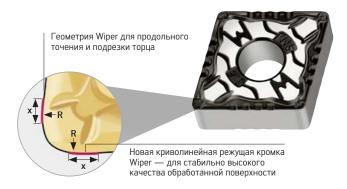
Обзор геометрий токарных пластин с задними углами

Чистовая обработка											
	Группы материалов					лов					
	Р	М	K	N	S	Н	0				
Геометрия Область применения	Сталь	Нержавеющая сталь	Чугун	Цветные металлы	Жаропрочные сплавы	Материалы высокой твёрдости	Прочее	Сечение по главной режущей кромке	Сечение по радиусу при вершине	а _р [мм]	f[мм]
FP2 — Пластина для чистовой обработки, шлифованная по периметру — Обработка длинных нежёстких деталей — Малые усилия резания	••	••	••	•	•			18°	18°	0,12-2,5	0,02-0,32

- •• Основная область применения
- Возможная область применения

Примечание: на рисунках показаны сечения пластин ССМТ09Т308 . . или ССGТ09Т308 . .

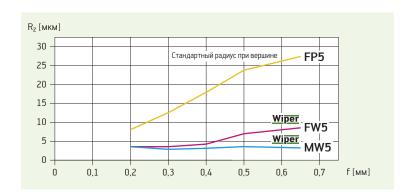
Обзор геометрий универсальных пластин — WL


Получист	овая обработка											
			Гру	ппы	мат	ериа	лов					
		Р	М	K	N	S	Н	0				
Геометрия	Область применения	Сталь	Нержавеющая сталь	Чугун	Цветные металлы	Жаропрочные сплавы	Материалы высокой твёрдости	Прочее	Сечение по главной режущей кромке	Сечение по радиусу при вершине	а _р [мм]	f[MM]
8	 ММ4 Получистовая обработка — с большим спектром применения Обработка материалов, дающих сливную стружку Специальная разработка для профильной обработки Стружколомание при точении с прямым и обратным ходом 	•	••	•		••			7°	18°	0,4-2,5	0,08-0,35
P	МР4 — Получистовая обработка — с большим спектром применения — Обработка материалов, дающих сливную стружку — Специальная разработка для профильной обработки — Стружколомание при точении с прямым и обратным ходом	••	•	•		•			7°	-18°	0,4-2,5	0,08-0,35
A	 MU6 Полнорадиусная геометрия для профильной обработки Мягкое резание благодаря очень хорошему стружколоманию Стружколомание при точении с прямым и обратным ходом 	••	••	••		••	•		18°6° 0,07		0,4-2,5	0,1-0,40

- •• Основная область применения
- Возможная область применения

Примечание: на рисунках показаны сечения пластин WL25-VC0708 . . или WL25-RC0420 . .

Рекомендации по применению пластин с геометрией Wiper


<u> Wiper</u>

Область применения:

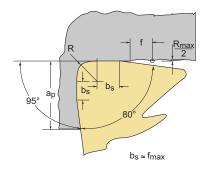
- Качество обработанной поверхности при одинаковой подаче вдвое выше в сравнении со стандартными пластинами
- Одинаковое качество обработанной поверхности при двойной подаче в сравнении со стандартными пластинами
- Повышение производительности более высокие подачи уменьшают машинное время
- Меньше инструментов возможность комбинирования черновой и чистовой обработки в одном заходе
- Повышенная стойкость, так как благодаря увеличенной подаче уменьшается время контакта с заготовкой

1. Шероховатость поверхности после обработки пластинами Wiper

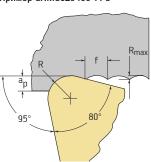
Материал: 38ХМ

Пластина: CNMG120408-FP5 WPP20S

CNMG120408-FW5 WPP20S CNMG120408-MW5 WPP20S

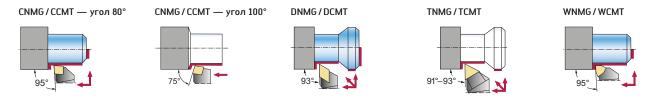

2. Профиль обработанной поверхности: сравнение пластин Wiper и стандартных пластин

Превышать указанные максимальные значения подачи [f_{max}] при использовании пластин с геометрией Wiper запрещается. Они примерно соответствуют длине криволинейной режущей кромки Wiper.


Радиус при вершине

R	FW5 f _{max} [мм]	MW5 f _{max} [мм]
0,4	0,45	-
0,8	0,55	0,65
1,2	0,65	0,75

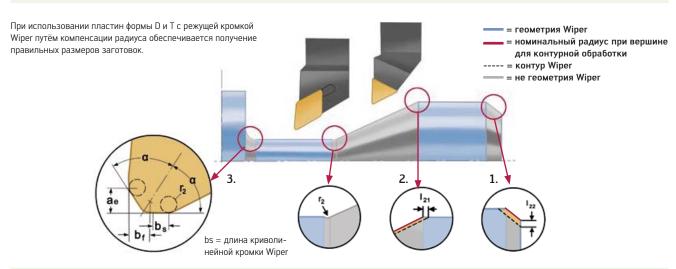
Чистовая обработка пластинами Wiper: Пример CNMG120408-FW5 / CNMG120408-MW5



Чистовая обработка стандартными пластинами: Пример CNMG120408-FP5

3. Токарные державки для использования пластин Wiper

Для достижения эффекта Wiper пластину Wiper необходимо использовать в державке с правильным углом в плане.



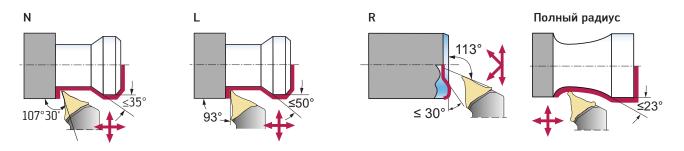
Примечания:

= = геометрия Wiper

- При работе с пластинами CNMG, CCMT, WNMG и WCMT возможно использование стандартной программы ЧПУ
- При профильной обработке и точении под углом с использованием пластин DNMG, DCMT, TNMG и TCMT эффект Wiper не обеспечивается
- Обратите внимание: в области радиусов / наклонных поверхностей требуется компенсация, так как в противном случае возможны нарушения контуров (см. п. 4).

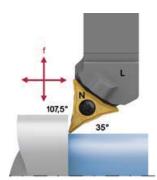
4. Воздействия на размеры заготовок при обработке пластинами DNMG/DCMT и TNMG/TCMT Wiper

DNMG110404-FW5 DNMG110408-FW5 DNMG150404-FW5 DNMG150408-FW5 DNMG150604-FW5 DNMG150608-FW5	r ₂ [MM] 0,3 0,4 0,3 0,4 0,3 0,4 0,3 0,4	a _e [MM] 0.42 0.73 0.42 0.73 0.42	b _s [MM] 0.18 0.42 0.18 0.42 0.18	b _f [мм] 0,41 0,56 0,41 0,56 0,41	1. Фаска с углом 45° I ₂₂ [мм] 0,01 0,06 0,01 0,06	2. Профильная обра- ботка, форма D, 27° I ₂₁ [мм] 0,09 0,04 0,09 0,04 0,09	3. Профильная обра- ботка, форма Т, 22° I ₂₁ [мм]
DNMG110408-FW5 DNMG150404-FW5 DNMG150408-FW5 DNMG150604-FW5 DNMG150608-FW5	0,3 0,4 0,3 0,4 0,3	0,42 0,73 0,42 0,73 0,42	0,18 0,42 0,18 0,42	0,41 0,56 0,41 0,56	0,01 0,06 0,01 0,06	0,09 0,04 0,09 0,04	I ₂₁ [MM]
DNMG110408-FW5 DNMG150404-FW5 DNMG150408-FW5 DNMG150604-FW5 DNMG150608-FW5	0,4 0,3 0,4 0,3	0,73 0,42 0,73 0,42	0,42 0,18 0,42	0,56 0,41 0,56	0,06 0,01 0,06	0,04 0,09 0,04	
DNMG150404-FW5 DNMG150408-FW5 DNMG150604-FW5 DNMG150608-FW5	0,3 0,4 0,3	0,42 0,73 0,42	0,18	0,41 0,56	0,01 0,06	0,09	
NMG150408-FW5 NMG150604-FW5 NMG150608-FW5	0,4 0,3	0,73	0,42	0,56	0,06	0,04	
NMG150604-FW5 NMG150608-FW5	0,3	0,42			· ·	· · · · · · · · · · · · · · · · · · ·	
NMG150608-FW5	-		0,18	0,41	0.01	0.00	
	0,4	0.73				0,09	
NIN 46110 (00 N 4) 4/5		0,73	0,42	0,56	0,06	0,04	
NMG110408-MW5	0,35	0,82	0,55	0,61	-0,01	0,24	
NMG110412-MW5	0,47	1,04	0,7	0,75	0,11	0,06	
NMG150408-MW5	0,3	0,82	0,55	0,61	-0,01	0,24	
NMG150412-MW5	0,47	1,04	0,7	0,75	0,11	0,06	
NMG150608-MW5	0,35	0,82	0,55	0,61	-0,01	0,24	
NMG150612-MW5	0,47	1,04	0,77	0,75	0,11	0,06	
NMG160404-FW5	0,3	0,44	0,18	0,34	0,01		0,1
NMG160408-FW5	0,4	0,76	0,39	0,56	0,06		0,07
NMG160408-MW5	0,35	0,85	0,55	0,58	0,02		0,24
NMG160412-MW5	0,56	1,09	0,7	0,7	0,15		0,07
1	NMG110412-MW5 NMG150408-MW5 NMG150412-MW5 NMG150608-MW5 NMG150612-MW5 NMG160404-FW5 NMG160408-FW5	NMG110412-MW5 0,47 NMG150408-MW5 0,3 NMG150412-MW5 0,47 NMG150608-MW5 0,35 NMG150612-MW5 0,47 NMG160404-FW5 0,3 NMG160408-FW5 0,4 NMG160408-FW5 0,35	NMG110412-MW5 0,47 1,04 NMG150408-MW5 0,3 0,82 NMG150412-MW5 0,47 1,04 NMG150608-MW5 0,35 0,82 NMG150612-MW5 0,47 1,04 NMG160404-FW5 0,3 0,44 NMG160408-FW5 0,4 0,76 NMG160408-MW5 0,35 0,85	NMG110412-MW5 0,47 1,04 0,7 NMG150408-MW5 0,3 0,82 0,55 NMG150412-MW5 0,47 1,04 0,7 NMG150608-MW5 0,35 0,82 0,55 NMG150612-MW5 0,47 1,04 0,77 NMG160404-FW5 0,3 0,44 0,18 NMG160408-FW5 0,4 0,76 0,39 NMG160408-MW5 0,35 0,85 0,55	NMG110412-MW5	NMG110412-MW5	NMG110412-MW5

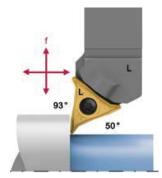

A3

Рекомендации по применению: система профильной обработки W1011-P Walter Turn

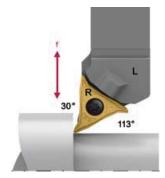
Система профильной обработки W1011-P Walter Turn

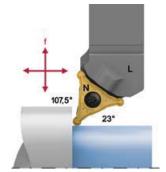


1. Область применения и угол профильной обработки



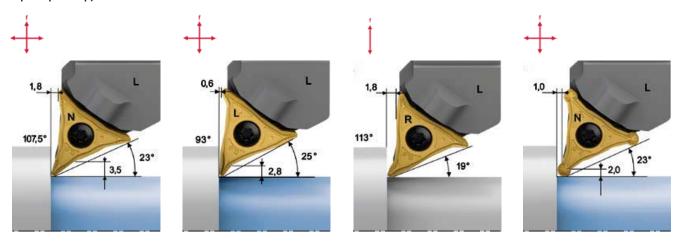
2. Варианты установки и углы в плане


На один и тот же инструмент можно устанавливать 4 различных пластины. Благодаря этому обеспечиваются разные углы в плане.


Пример: **Инструмент левого исполнения:** W1011-2525L-WL25-P **Нейтральная пластина:** WL25-VC0708N-MP4 WPP20S

Пример: **Инструмент левого исполнения:** W1011-2525L-WL25-P **Пластина левого исполнения:** WL25-VC0708L-MP4 WPP20S

Пример:
Инструмент левого исполнения:
W1011-2525L-WL25-P
Пластина правого исполнения:
WL25-VC0708R-MP4 WPP20S



Пример: **Инструмент левого исполнения:**W1011-2525L-WL25-P **Нейтральная пластина:**WL25-RC0420**N**-MU6 WPP20S

— UMALTER

3. Максимальная подача пластин WL25 / W1011-P

Пример инструмента левого исполнения

4. Режимы резания

Геометрия / радиус на уголках		N	/M4/MP4 – R0,	4	
	Точение	е с обратным хо	дом (f ₂)	Точение с пря	мым ходом (f ₁)
Угол в плане	31°/35°	50°	72,5°	93°	107,5/113°
a _{pmin} [мм]	0,2	0,3	0,4	0,4	0,4
а _{р max} [мм]	1,4	1,9	2,4	2,5	2,4
f _{min} [мм]	0,14	0,10	0,08	0,08	0,08
f _{max} [мм]	0,40	0,33	0,26	0,25	0,26

Геометрия / радиус на уголках		N	/M4/MP4 – R0,	8	
	Точение	е с обратным хо	дом (f ₂)	Точение с пря	мым ходом (f ₁)
Угол в плане	31°/35°	50°	72,5°	93°	107,5/113°
a _{pmin} [мм]	0,3	0,4	0,5	0,5	0,5
а _{р max} [мм]	1,4	1,9	2,4	2,5	2,4
f _{min} [мм]	0,21	0,16	0,13	0,12	0,13
f _{max} [мм]	0,50	0,42	0,34	0,32	0,34

Геометрия / радиус на уголках			MU6 - R2,0		
	Точение	е с обратным хо	дом (f ₂)	Точение с пря	иым ходом (f ₁)
Угол в плане	31°/35°	50°	72,5°	93°	107,5/113°
a _{p min} [мм]	0,3	0,4	0,5	0,5	0,5
а _{р max} [мм]	1,1	1,5	1,9	2,0	1,9
f _{min} [мм]	0,21	0,16	0,13	0,12	0,13
f _{max} [мм]	0,60	0,52	0,42	0,40	0,42

Эти значения соответствуют значениям глубины резания и подачи на странице каталога для заказа.

Обзор геометрий пластин

Пластины DX для отрезки и обработки канавок

			Гру	уппы	мате	ериал	10В					
Геометрия	Область применения	Сталь	Нержавеющая сталь	К	Цветные металлы Х	Жаропрочные сплавы 📞	Материалы высокой Н твёрдости	Прочее 0	Сечение по главной режущей кромке	Вид главной режущей кромки	s [MM]	f [мм]
· Po	CF6										1,5	0,03-0,12
M	– Малые подачи – Минимальная остаточная								/ ^{19°}		2	0,03-0,14
	бобышка/заусенец при отрезке	••	••		••	••		•	7		2,5	0,03-0,18
,	– Малые усилия резания								0		3	0,04-0,23
	CF5										1,5	0,03-0,12
	– Отрезка и обработка канавок – Малые и средние подачи								£ 18°		2	0,04-0,15
3	– Малые и средние подачи – Хороший контроль	••	••	•	••	••		•			2,5	0,05-0,18
A.	стружкообразования – Минимальная остаточная бо-								6°		3	0,08-0,23
	бышка/заусенец при отрезке											
	CE4										1,5	0,03-0,12
	– Отрезка и обработка канавок								√20° \12°		2	0,06-0,17
M	Средние и большие подачиУстойчивое стружколомание	••		••							2,5	0,07-0,21
	 Прочная режущая кромка 				Ľ		Ĭ				3	0,09-0,33
									0:			
- 40	GD3										2	0,04-0,15
	– Мягкий процесс обработки								√9°		2,5	0,04-0,17
	– Малые и средние подачи	••	••	•							3	0,06-0,21
	 Стандартные операции отрезки и обработки канавок 	••										
									6°			
											2	0,04-0,14
1	GD6 – Средние подачи								.2%° 15°		2.5	0,04-0,14
A. S. C.	– Для длинностружечных										3	0,08-0,21
	материалов	••	••	•	•	••						
	– Получистовая обработка								6°			

- •• Основная область применения
- Возможная область применения

Пластины DX для продольного точения, отрезки и обработки канавок

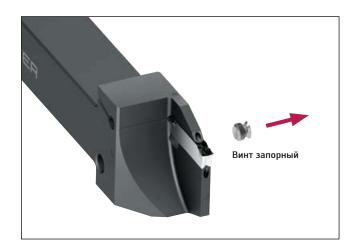
			Гр	уппы	мате	ериал	пов						
Геометрия	Область применения	Сталь	Нержавеющая сталь	К	Цветные металлы Х	Жаропрочные сплавы С	Материалы высокой Н твёрдости	Прочее	Сечение по главной режущей кромке	Вид главной режущей кромки	s [мм]	а _р [мм]	f [мм]
	 UF4 − Любые операции обработки канавок − Хороший контроль стружкообразования − Средние подачи − Позитивная геометрия 	••	••	••	•	•			32° 111°		2 2,5 3	0,3-1,2 0,3-1,3 0,4-2,0	0,10-0,18 0,10-0,21 0,10-0,23
	UD4 — Большая область стружколомания — Оптимальное стружколомание при обработке поковок — Прочная режущая кромка — Средние и большие подачи	••	•	••					6°		3	0,3-1,2 0,4-2,0	0,10-0,18 0,10-0,23
-	 UA4 Для обработки чугуна Для средних и высоких режимов резания Высокая надёжность при обработке чугуна 			••			•		6°-		3	0,3-1,2	0,08-0,18 0,10-0,25

Пластины DX с полным радиусом для точения канавок и профильной обработки

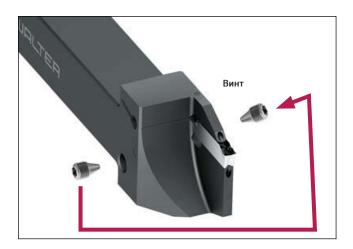
			Гр	уппы	мат	ериал	пов						
Геометрия	Область применения	Сталь	Нержавеющая М сталь	К нулун	Цветные металлы Х	Жаропрочные сплавы S	Материалы высокой Н твёрдости	О евноси	Сечение по главной режущей кромке	Вид главной режущей кромки	S [MM]	а _р [мм]	f [мм]
	 RF7 Для профильного точения и обработки с затылованием Высокое качество обработанной поверхности Прочная режущая кромка 	••	••	•	•	••			65		3	0,1-1,0 0,1-1,5	0,08-0,26 0,10-0,36
	RD4 — Для профильной обработки — Идеальный контроль стружкообразования при обработке канавок — Средние и большие подачи — Спечённые	••	•	••		•			5		3	0,2-1,0 0,5-1,5	0,08-0,28 0,10-0,38

- •• Основная область применения
- Возможная область применения

Δ2


Инструкция по сборке Walter Cut DX

Цель: при необходимости возможно переоборудование (перестановка) рабочей стороны инструмента.


При поставке зажимной винт Torx 15IP смонтирован на левой стороне державки. Порядок монтажа этого винта на другой стороне:

Важно: перестановка допускается только при установленной пластине!

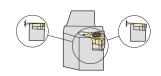
1. Выкрутите запорный винт на правой стороне державки с помощью шлицевой отвёртки.

2. Выкрутите зажимной винт Torx 15IP с левой стороны и вкрутите его справа с предписанным моментом затяжки.

3. Снова вкрутите запорный винт в освободившееся отверстие на левой стороне державки для защиты от загрязнения.

Ссылка на видеоролик с инструкцией по перестановке

Рекомендации по применению: резьбонарезание с Walter NTS


Резьбонарезание — опорные пластины

Опорные пластины установлены в режущей головке с державкой

В таблице показаны опорные пластины, которые стандартно смонтированы в державке и используются при резании в направлении к передней бабке.

Базовый держатель		Режущая головка QuadFit QT1820 с направленной подачей СОЖ
Базовый держатель		Внутренняя резьба
Тип пластины		Однозубая пластина
Опорная пластина		
Размер пластины	16	GXA 16-1
-	22	NXA 22-1
	22	NXA 22-1

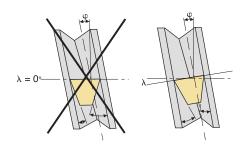
Путём замены опорной пластины можно выбирать угол наклона от +5 до -2. Для правой/левой резьбы следует использовать одинаковые опорные пластины. Высота режущей кромки всегда остается одинаковой.

Для обеспечения максимальной точности профиля и равномерного износа угол наклона (λ) пластины должен по возможности точно соответствовать углу наклона (ϕ) резьбы.

Выбор опорных пластин

Базовый держатель		Режущая головка QuadFit Q. с направленной подачей CO	
Базовый держатель			
		Внутренн	яя резьба
Тип пластины		Однозубая	пластина
Опорная пластина			
		Направление резания к передней бабке	Направление резания к задней бабке
Размер пластины	16	GXA16-0, -1, -2, -3, -4	GXA16-0, -99, -98
	22	NXA22-0, -1, -2, -3, -4	NXA22-0, -99, -98

Выбор опорной пластины


Выберите правильную опорную пластину на основании приводимого ниже изображения. На изображении показана последняя цифра в обозначении опорных пластин.
Пример: GX16-1

Способ изготовления

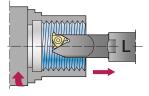
Направление резания к передней бабке = см. правый треугольник изображения Направление резания к задней бабке = см. левый треугольник изображения

Вертикальные ряды — шаг резьбы

Однозаходная резьба, шаг (Ph) = шаг резьбы (P) Многозаходная резьба, шаг (Ph) = шаг резьбы (P) х кол-во ниток

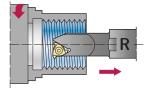
Рекомендации по применению: резьбонарезание с Walter NTS

(продолжение)


Горизонтальные ряды = диаметр резьбы [D₂]

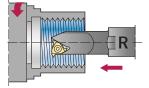
								Cr	ред	цний	йді	иам	етр	D D	2 [N	им.	ı —	- пс	да	ча в	в на	пра	авл	ени	из	адн	ей	баб	ки														TPI	Ph
		5	15	20	25	30	40	45	50	60	65	5 70	7.	5 8	35	90	95	100	110	115	120	130	135	140	150	155	160	165	170	180	190	200	225	250	300									[мм]
-	2	-	-	-	-	-	-	-	-	-	1-	-	Τ-	- -	-	-	98	98	98	98	98	98	98	98	98	99	99	99	99	99	99	99	99	99	99					0	0	1	80	-
	3	-	-	-	-	-	-	-	-	-	98	3 98			18	98	98	98	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99				0	0	0	1	72	-
8,0	-	-	_	-	-	_	-	-	-	98		_		8 9		98	99	99	99	99	99	99	99	99	99	99	99	99	99	99		99		99	0			0	0	0	0	1	64	_
	4	-	_	_	_	_	-	_	98	-	-	3 98		8 9		-	99	_	_	99	_	99	99	-	99	99	99	99	-	-		99		0			0	0	0	0	1	2	56	
6,0	-	-	-	-	_	-	-		98	-	-			9 9	_	_	99	99	99			99	-	-	99	_	99		_	_	-	99	0				0	0	0	0	1	2	_	0,5
	5	-	-	-	_	-	98			-					-	99	99	99	99		_	99	_	-	99		99	-		99	0	0				0	0	0	0	0	1	2	48	_
5,0	_	-	-	-	_	-	98	-	-			_	_			_	99	99	99	_	_	99	-	-	99	_	-	_		-	0	_		L.	0	0	0	0	0	1	1	2	44	
	6	-	-	_	-	-	98	-		-	426	_		9 9	_	_	99	99	99	-	-	99		-	99	0	0	0	0	0	_			0	0	0	0	0	0	1	1	2	40	_
4,0	_	-	-	-	-	98	98			-		_	_			99	99	99	99		99	99	-	-	99	0	0	0	0	0				0	0	0	0	0	1	1	1	3	36	-
-	7	-	-	_	_	98	-	-			_	_	_	9 9			99	99	99		99	99		0	0	0	0	0	0		-	-	0	0	0	0	0	0	1	1	1	3	-	0,75
3,5	-	 -	-	_	-	-	98	-			_	_		9 9			99	99	99	-	-	99	_	0	0	0	0	0	-		-	0	0	0	0	0	0	0	1	1	1	3	32 28	-
3,0	8	-	-	-	98 98	98	99	-			_		_		-	99	99	99	99	-	99	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	1	1	1	1	3		1,0
3,0	9	Η-	_	-	98	98	99	-			_				_	99 99	99 99	99	0	0	0	0	0	0	0	0	U	+	0	0	0	0	0	0	0	0	0	1	1	1	1	4	24	1,0
-	10	H	-	98	98	98	99	_	99		_	_		==	_	99 99	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	1	1	1	1	2	5	_	1,25
2,5	10	H	-	98	98	98	99		99	_	_	4	_			99	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	1	1	1	1	2	5	20	-
	11	-	-	98	98	-	99				_	_			_	0	0	0	0	0	0	0	0	0	U		0	0	0	0	0	0	0	0	1	1	1	1	1	1	2	5	18	_
_	12	+-	-	98	98		99	_	_		_	_		_	-	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2	5	-	1,5
2,0	_	-	_	98	99	99		-	-		_			_	-	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2	_	16	_
	13	-		98	99	99	99			-		_	_	_		0	0	0	0	0	Ō	0	Ť		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	-	-	1,75
_	14	-		98	99	99	-	_	99			_	_	_		0	0	0	0	0	0	Ť	\vdash	\vdash	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	2	2	-	14	-
1,75	_	-	98	98	99	99	99	99	99		_	0	C)	0	0	0	0	0	0				0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	-	13	-
_	16	-	98	99	99	99	99	99	99	0	0	0	C)	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	-	-	2,0
1,5	-	-	98	99	99	99	99	99	99	0	0	0	C)	0	0	0	0	0			0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	3	-	12	-
-	18	_	98	99	99	99	99	99	99	0	0	0	C)	0	0	0	0				0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	3	-	11	-
_	20	_	98		99	99	99		0	0	0	0			0	0	0				0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	3	-	-	2,5
1,25	_	-	98	-	-	-	99		_	_	_	_	-	_	-	0	0			0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	3	-	10	_
	24	-		99		99	0	0	0		_	_		_	_	0			0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	2	2	3	3	-	9	-
1,0	_	-	99	-	-	99	0	0	0	_	-	_	_	_	0				0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	2	2	3	4	-	-	3,0
	28	-	99		99	99	0	0	0	0	_	_		_	0		_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	2	2	3	4	-	8	-
- 0.75	32	-	99		99	0	0	0	0		_	_	_	1	_	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	2	2	3	3	4	-	-	3,5
0,75	-	-		99	_	0	0	0	0	_	-	_	+	+		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	3	3	4	-	7	-
	36	-	99 99		_	0	0	0	0	_	_	+	+	+.	-	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	3	4	5	-	-	4,0
-	40	98 98	99		0	0	0	0	0		+	+	-	_	_	0	0	0	0	1	-	1	-	1	1	1	1	1	1	1	1	1	1	1	2	2	2	3	3	5	5	-	6	5.0
	44	98	99	0	0	0	0	0	U	+	+	0	0		_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	3	4	5	H	H	5	5,0
0,5	40	98	99	0	0	0	0	10	\vdash	+	0	_		_	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	3	4	4	5	H	E	-	6,0
	56		99		0	0	0	+	\vdash	0	_	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	3	3	4	5	_	H	-	4	-
	64	99		0	0	0	U	+	0			1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	3	3	4	5	_	+-	+=	Η_	-	8,0
	72	99			Ť	Ť	\vdash	\vdash	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	3	3	3	4	5	+	 -	+	 	3	-
_	80	99		Ť			t		1	1	1	1	1	_	-	1	1	1	1	2	2	2	2	2	2	2	2	2	3	3	3	3	4	4	5	5	-	_	-	-	 	 	2	_
	TPI					_		-	_	0 250	0 22	5 20			_	_	165		155					_				_	_		75	_	65	_		45	40	30	25	20	15	5		
Р _h [мм]	IPI									-	-	- -0	-	7 1	_	_		_	_		_		_	_		_	_	_	_		_	пе	1	_		1	_		1-3	1=3	1-5			

Подача в направлении задней бабки — внутренняя резьба

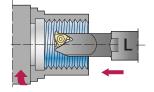

Правая резьба

левая державка левая пластина обратный угол наклона

Левая резьба


правая державка правая пластина обратный угол наклона

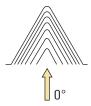
Подача в направлении передней бабки — внутренняя резьба


Правая резьба

правая державка правая пластина

Левая резьба

левая державка левая пластина

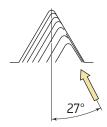

Рекомендации по применению: обработка резьбовыми инструментами Walter NTS

Варианты захода пластины при врезании и их влияние на процесс резания

Радиальное врезание

Рекомендуется:

- При обработке короткостружечных материалов
- При обработке материалов высокой твердости



- Формирование V-образной стружки
- Врезание обеих режущих кромок
- Повышенная температура в зоне резания
- Равномерный износ пластин по обеим боковым сторонам
- Подходит для небольших шагов

Одностороннее боковое врезание 27°-29°

Рекомендуется:

- При шаге более 1,5 мм или 16 ниток/дюйм
- При обработке трапецеидальной резьбы

- Правильное формирование стружки
- Формирование витой стружки
- Врезание одной режущей кромки
- Удаление стружки из резьбовой канавки
- Высокое качество боковой поверхности профиля резьбы

Боковое двустороннее врезание

Рекомендуется:

- При большом шаге
- При обработке материалов, дающих сливную стружку

- Правильное формирование стружки
- Формирование плоской витой стружки
- Равномерное использование обеих режущих кромок, т. е. равномерный

Рекомендации по числу проходов при нарезании резьбы на токарных станках с ручным управлением

Рекомендуемые режимы резания можно рассматривать только как базовые значения. Они определены для благоприятных условий обработки стали средней прочности. При обработке материалов более высокой прочности число проходов следует увеличить. При этом необходимо уменьшить величину подачи при первых черновых проходах.

При других условиях обработки число проходов корректируется соответствующим образом. Это справедливо при нарезании внутренней резьбы расточными державками с вылетом больше 2,5 × диаметра.

Дюймовая резьба (WH), наружная и внутренняя обработка

Число							Шаг	[ниток/д	[мйм]						
проходов	28	26	20	19	18	16	14	12	11	10	9	8	7	6	5
Общая глубина [мм]	0,64	0,68	0,87	0,91	1,07	1,12	1,23	1,42	1,54	1,69	1,87	2,09	2,41	2,80	3,34
16															
15															
14														0,10	0,10
13														0,12	0,12
12												0,08	0,08	0,14	0,15
11											0,08	0,12	0,12	0,14	0,17
10										0,08	0,12	0,12	0,14	0,15	0,18
9									0,08	0,12	0,12	0,13	0,15	0,16	0,19
8						0,08	0,08	0,08	0,12	0,13	0,13	0,14	0,16	0,17	0,20
7					0,08	0,10	0,11	0,13	0,13	0,13	0,14	0,15	0,18	0,19	0,22
6			0,08	0,08	0,11	0,10	0,12	0,14	0,14	0,15	0,15	0,16	0,19	0,20	0,24
5	0,08	0,08	0,11	0,12	0,13	0,12	0,13	0,15	0,16	0,16	0,17	0,18	0,21	0,21	0,27
4	0,11	0,11	0,13	0,13	0,14	0,14	0,15	017	0,18	0,18	0,19	0,20	0,23	0,24	0,30
3	0,12	0,14	0,15	0,16	0,17	0,16	0,18	0,21	0,21	0,21	0,22	0,23	0,27	0,28	0,36
2	0,15	0,16	0,19	0,20	0,21	0,20	0,22	0,26	0,25	0,26	0,27	0,28	0,33	0,34	0,41
1	0,18	0,19	0,21	0,22	0,23	0,22	0,24	0,28	0,27	0,27	0,28	0,30	0,35	0,36	0,43

Радиальная подача [мм]

Уменьшение скорости резания

Рекомендации по применению: обработка резьбовыми инструментами Walter NTS

(продолжение)

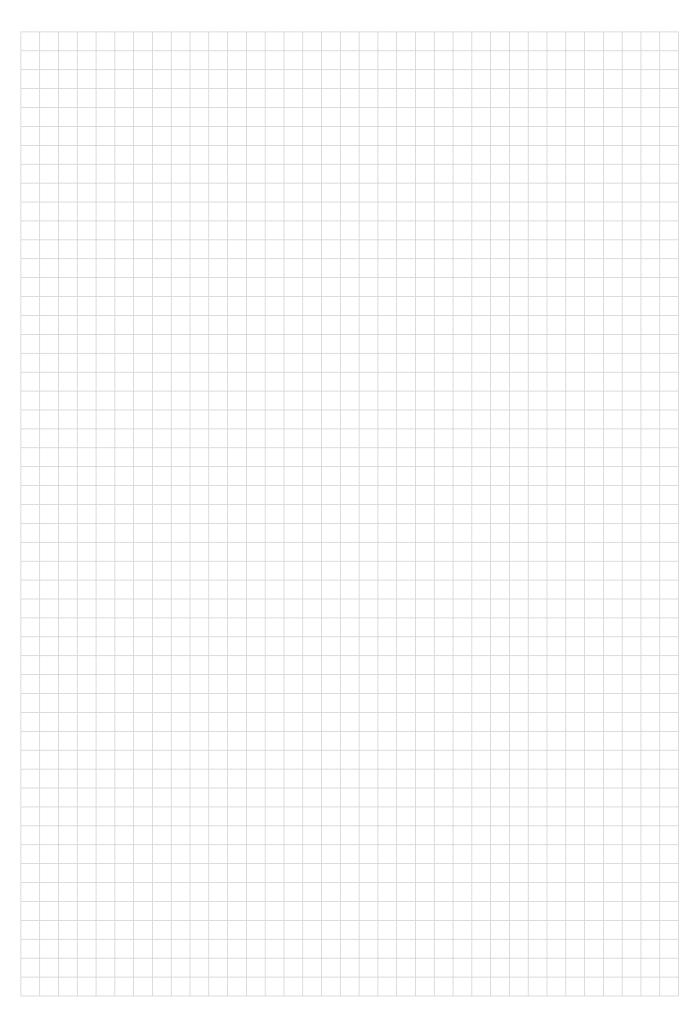
Внутренняя обработка, метрическая резьба 60°

Число									Шаг	[мм]								
проходов	0,5	0,6	0,7	0,75	0,8	1,0	1,25	1,5	1,75	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0
Общая глубина [мм]	0,34	0,38	0,44	0,48	0,51	0,63	0,77	0,90	1,07	1,20	1,49	1,77	2,04	2,32	2,62	2,89	3,20	3,46
16																	0,10	0,10
15																	0,12	0,12
14														0,08	0,10	0,10	0,12	0,13
13														0,10	0,11	0,12	0,13	0,14
12												0,08	0,08	0,10	0,12	0,14	0,14	0,15
11												0,09	0,10	0,11	0,12	0,14	0,14	0,15
10											0,08	0,10	0,11	0,12	0,13	0,15	0,15	0,16
9											0,10	0,10	0,12	0,12	0,14	0,15	0,16	0,18
8									0,08	0,08	0,10	0,11	0,13	0,13	0,15	0,16	0,17	0,19
7									0,09	0,10	0,11	0,12	0,14	0,14	0,16	0,17	0,18	0,20
6							0,08	0,08	0,09	0,11	0,12	0,13	0,15	0,15	0,19	0,20	0,20	0,22
5						0,08	0,09	0,11	0,10	0,12	0,13	0,14	0,17	0,18	0,21	0,22	0,22	0,24
4	0,07	0,07	0,07	0,07	0,07	0,09	0,10	0,13	0,13	0,14	0,15	0,16	0,19	0,21	0,23	0,25	0,26	0,28
3	0,07	0,08	0,08	0,10	0,11	0,11	0,13	0,15	0,15	0,17	0,18	0,20	0,23	0,24	0,27	0,30	0,32	0,35
2	0,09	0,11	0,13	0,14	0,15	0,16	0,17	0,21	0,21	0,23	0,25	0,26	0,30	0,31	0,33	0,38	0,38	0,41
1	0,11	0,12	0,16	0,17	0,18	0,19	0,20	0,22	0,22	0,25	0,27	0,28	0,32	0,33	0,36	0,41	0,41	0,44

Радиальная подача [мм]

Уменьшение скорости резания

Внутренняя обработка, резьба UN 60°


Число							Ш	∐аг[нит	ок/дюйм	4]						
проходов	32	28	24	20	18	16	14	13	12	11	10	9	8	7	6	5
Общая глубина [мм]	0,49	0,59	0,66	0,78	0,86	0,95	1,10	1,17	1,26	1,38	1,49	1,66	1,86	2,11	2,44	2,93
16																
15																
14															0,10	0,10
13															0,11	0,12
12													0,08	0,08	0,11	0,14
11												0,08	0,10	0,11	0,12	0,14
10											0,08	0,09	0,10	0,12	0,12	0,15
9										0,08	0,10	0,10	0,11	0,12	0,13	0,16
8							0,08	0,08	0,08	0,10	0,10	0,11	0,11	0,13	0,14	0,17
9						0,08	0,09	0,10	0,10	0,11	0,11	0,12	0,12	0,14	0,15	0,18
6				0,08	0,08	0,09	0,10	0,11	0,11	0,12	0,12	0,13	0,13	0,15	0,16	0,20
5		0,08	0,08	0,09	0,10	0,10	0,11	0,12	0,13	0,13	0,13	0,14	0,15	0,17	0,18	0,22
4	0,08	0,10	0,10	0,11	0,12	0,12	0,13	0,13	0,15	0,15	0,15	0,16	0,17	0,20	0,20	0,25
3	0,10	0,10	0,14	0,13	0,14	0,14	0,15	0,16	0,18	0,18	0,18	0,19	0,21	0,23	0,24	0,30
2	0,14	0,14	0,16	0,17	0,19	0,20	0,21	0,22	0,24	0,24	0,25	0,26	0,28	0,28	0,32	0,38
1	0,17	0,17	0,18	0,20	0,23	0,22	0,23	0,25	0,27	0,27	0,27	0,28	0,30	0,34	0,35	0,42

Радиальная подача [мм]

Уменьшение скорости резания

A 2

А3

В — Обработка отверстий

Сверление — В1

	Обзор программы	86
	Система обозначений	87
	Пластины для обработки отверстий	90
Свёрла с пластинами	Обзор программы	95
	Свёрла с пластинами	96
Техническая информация	Режимы резания	112
	Область применения сплавов	118

Черновое и чистовое растачивание — В2

Пластины для чернового и чистового растачивания	Пластины для черновых и чистовых расточных оправок	119

В2

Обзор программы пластин для обработки отверстий

Вид обработки	Форма пластины		Описание	Стр.
Сверление		P484	для сверления	90
		P284	для сверления	92
		L	для сверления	93
		w	для сверления	94

-IUALTER

B 1

Система обозначений квадратных пластин для обработки отверстий

1							
Обозначение пластин Walter							
P284	для D3120						
P484	для D4120 и B421						

5

Направление резания

Правое

Нейтральное

R

Ν

	2
	Исполнение
0	Шлифованные по периметру
1	Спечённые

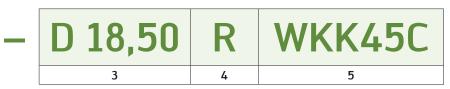
6

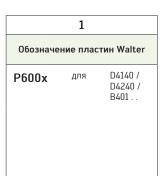
Геометрия Walter

А57 Прочная

Е67 Острая

E57 Универсальная


	3
	Положение
С	Центральная
Р	Периферийная
S	Центральная и периферий- ная пластины идентичны


	4
	Размер пластины
P28	4
1	$D_C = 16,00-20,00$
2	$D_C = 21,00-25,00$
3	$D_C = 26,00-30,00$
4	$D_C = 31,00 - 36,00$
5	$D_C = 37,00-42,00$
P48	4
1	$D_C = 13,50-16,00$
2	$D_C = 16,50-20,00$
3	$D_C = 20,50-24,00$
4	$D_C = 24,50-29,00$
5	$D_C = 29,50 - 35,00$
6	$D_C = 36,00-42,00$
7	$D_C = 43,00-50,00$

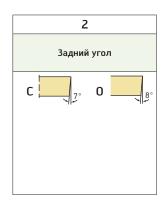
 $D_C = 51,00-59,00$

Система обозначений пластин для обработки отверстий

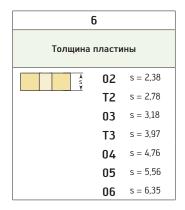
	2	
	Геометрия Walter	
1	для ISO P	
3	для ISO M & ISO S	
4	для ISO N	
5	для ISO K	

	3	
	Диаметр пластин	
D	В ММ	

	4
	Направление резания
R	Правое

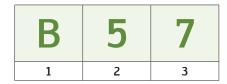

5

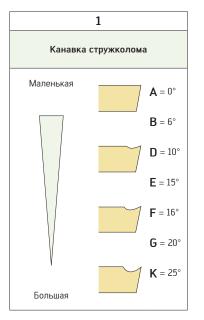
Система обозначений пластин для обработки отверстий по ISO 1832

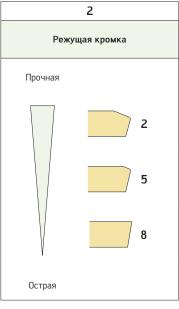


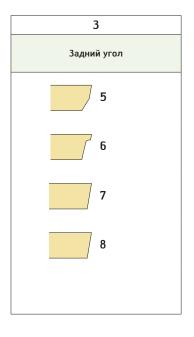
	8
	Обозначение изготовителя
	i и/или 9-й символы используются только по мере необходимости. рез дефис добавить другие символы (например, для обозначения
Сверление	A57, B57, D57, E57, E67

Система обозначения твёрдых сплавов — Сверление и обработка отверстий

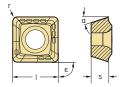

W	S	Р	45	G
Walter	1	2	3	4


	1
1. 0	сновная область применения или вид покрытия
Р	Сталь
М	Нержавеющая сталь
K	Чугун
N	Цветные металлы
S	Жаропрочные сплавы
Н	Материалы высокой твёрдости
Α	Алюминиевое покрытие CVD
X	Покрытие PVD


	2
2. 0	Основная область применения
P	Сталь
М	Нержавеющая сталь
K	Чугун
N	Цветные металлы
S	Жаропрочные сплавы
Н	Материалы высокой твёрдости

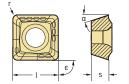

	3			4
	Область применен	ия ISO		Серия
	Износостойкость		S	Tiger·tec® Silver
01		1	С	Color Select
10			G	Tiger·tec® Gold
15				3
20				
25				
30	\			
35				
45				
		Прочность		
25 30 35		Прочность		

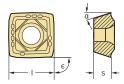
Система обозначений геометрий пластин для сверления



Пластины квадратные P484.

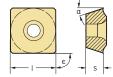
Tiger-tec® Gold

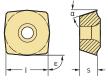

Сменные пластины — периферийные


		JOK								Р			М		ı	(N			S
		кро							1	HC	1		HC		Н	C		HC		ŀ	HC
	Обозначение	Кол-во режущих кромок	I MM	S MM	r MM	α	ε	WKP25S	WKP35S	WSP45	WSP456 WXP40	WSP45	WSP456	WXP40	WKP255	WAP40	WSP45	WSP456	WXP40	WSP45	WSP45G WXP40
	P4840P-1R-A57	4	4,55	1,96	0,29	11°	90°		23	33	3	23	33	•	9 8	3				23	13
	P4840P-2R-A57	4	5,52	2,28	0,34	11°	90°		23	(3)	\$	33	\$	•	9	3				23	3
U.	P4840P-3R-A57	4	6,5	2,8	0,4	11°	90°		23	*	\$	33	33	•	9	\$				23	3 3
	P4840P-4R-A57	4	7,8	3,36	0,48	11°	90°		23	33	3	33	\$	•	9 8	\$				23	13
	P4840P-5R-A57	4	9,56	4,12	0,59	11°	90°		33	33	3	33	*	•	9 8	\$				23	13
	P4840P-6R-A57	4	11,75	4,87	0,7	11°	90°		33		3	33		•	9	3				23	13
	P4840P-7R-A57	4	14,03	5,53	0,8	11°	90°		23		3	33	33	•	9	3				23	1
	P4840P-8R-A57	4	16,5	5,53	1	11°	90°		33	*	\$	33	33	•	9	\$				23	13
	P4840P-1R-E57	4	4,55	1,96	0,29	11°		®	_		_	33	33	•	9				$\overline{}$	_	13
	P4840P-2R-E57	4	5,52	2,28	0,34	11°		®	-		\$	33	33	•	9	\$				23	13
- 0	P4840P-3R-E57	4	6,5	2,8	0,4	11°	90°	®	_	_	_		-		9					_	13
	P4840P-4R-E57	4	7,8	3,36	0,48	11°	90°	®	_	_	_	_	-	•	9 8	_			$\overline{}$	_	13
	P4840P-5R-E57	4	9,56	4,12	0,59	11°	90°	®	_	_		33	-		9	_			-	_	13
	P4840P-6R-E57	4	11,75	4,87	0,7	11°	90°	_	49	_	_	33	33	•	9 8	_				23	13
	P4840P-7R-E57	4	14,03	5,53	0,8	11°	90°	-	_			33	33	•	9 8				$\overline{}$	_	13
	P4840P-8R-E57	4	16,5	5,53	1	11°	90°	®	(2)		\$	33	\$	•	9 8	\$				33	13
	P4840P-1R-E67	4	4,55	1,96	0,29	11°	90°	®	(2)		\$	33	33	•	9	\$				23	13
	P4840P-2R-E67	4	5,52	2,28	0,34	11°	90°	_	_	※	3	33	33	•	9 8	3		_		33	13
arma de la	P4840P-3R-E67	4	6,5	2,8	0,4	11°	90°	-	_		\$	33	33	•	9	\$				23	13
	P4840P-4R-E67	4	7,8	3,36	0,48	11°	90°	_	_	※	3	33	33	•	9 8	3		_		_	13
	P4840P-5R-E67	4	9,56	4,12	0,59	11°	90°	-	_		_	33		•	9				-	_	13
	P4840P-6R-E67	4	11,75	4,87	0,7	11°	90°	_	_	※	_	33	\$	_	9 8	_	(3)		-	_	1
	P4840P-7R-E67	4	14,03	5,53	8,0	11°	90°		_			33		•	9				-	_	13
	P4840P-8R-E67	4	16,5	5,53	1	11°	90°	\rightarrow	_	(3)		33		_	9 8	_	(3)		-	_	1
1	P4841P-1R-A57	4	4,55	1,96	0,29	11°	90°	_	_		3	33		•	9 8	3				_	1
	P4841P-2R-A57	4	5,52	2,28	0,34	11°	90°		33		_	33	\$	_	9 8	_			-	_	13
3	P4841P-3R-A57	4	6,5	2,8	0,4	11°	90°	_	33	_	3	33	\$	•	9 9	\$				_	13
	P4841P-4R-A57	4	7,8	3,36	0,48	11°	90°	_	33	_	_	33	\$	_	9 8	_			-	_	13
	P4841P-5R-A57	4	9,56	4,12	0,59	11°	90°	_	33	E	3	33	33	•	9				-	_	1
	P4841P-6R-A57	4	11,75	4,87	0,7	11°	90°	_	_	3	_	33	33	_	9 8	_			-	_	19
	P4841P-7R-A57	4	14,03	5,53	0,8	11°	90°		33	E	3	33	33	•	9 8	3				23	1
	P4841P-8R-A57	4	16,5	5,53	1	11°			-	-	_	33	\$	•	9 8	3				23	<u> </u>
	P4841P-1R-E57	4	4,55	1,96	0,29	11°		®	_	_		33	-	•	9 8	3				_	1
	P4841P-2R-E57	4	5,52	2,28	0,34	11°		®	-	_	_	33	-		9 8				-	_	13
	P4841P-3R-E57	4	6,5	2,8	0,4	11°	90°	®	-	_	_	33	-	_	9 8				-	_	13
_	P4841P-4R-E57	4	7,8	3,36	0,48	11°	90°			※		33	-		9				-	_	1
	P4841P-5R-E57	4	9,56	4,12	0,59	11°		®	-	_	_	3	-		9 8				-	_	1 3
	P4841P-6R-E57	4	11,75	4,87	0,7	11°		®	_	_	_	33			9					_	1
	P4841P-7R-E57	4	14,03	5,53	0,8	11°		®	-	_	_	_		_	9 8				-	33	_
	P4841P-8R-E57	4	16,5	5,53	1	11°		9			\$ CDD	33		_	9 8	3					

Пластины квадратные P484 .

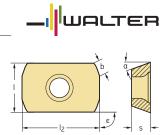
Tiger-tec® Gold


Сменные	пластины — цент	граль	ные																				
		¥								Р				М		K			N			S	
		bow								HC			ا	IC.		HC	:		НС			HC	
	Обозначение	Кол-во режущих кромок	I MM	S MM	r MM	α	3	WKP25S	WKP35S	WSP45	WSP456	WXP40	WSP45	WSP456	WAF 40	WKP35S	WXP40	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40
	P4841C-1R-A57	4	4,9	1,96	0,29	11°	90°						;		3	X	33						33
	P4841C-2R-A57	4	5,95	2,38	0,34	11°	90°					3	;		3	X	33						
A	P4841C-3R-A57	4	7	2,8	0,4	11°	90°					33	;		3	X	23					3	23
	P4841C-4R-A57	4	8,4	3,36	0,48	11°	90°					3	;	*	\$	2	33					23	23
	P4841C-5R-A57	4	10,29	4,12	0,59	11°	90°					33	;	*	3	2	23				:	3	33
	P4841C-6R-A57	4	12,24	4,87	0,7	11°	90°					33	;		3	2	23					3	3
	P4841C-7R-A57	4	14,69	5,53	0,8	11°	90°					33	;		3	2	33					33	33
	P4841C-8R-A57	4	17,49	5,53	1	11°	90°					33	;		3	2	23					3	33
	P4841C-1R-E57	4	4,9	1,96	0,29	11°	90°					33	;	3 (2)	3	4	33					3	33
	P4841C-2R-E57	4	5,95	2,38	0,34	11°	90°					33	;		3	4	33					23	23
0	P4841C-3R-E57	4	7	2,8	0,4	11°	90°					33	;		3	4	33					3	33
	P4841C-4R-E57	4	8,4	3,36	0,48	11°	90°					33	;		3	4	33					3	
	P4841C-5R-E57	4	10,29	4,12	0,59	11°	90°					33	:	*	3	4	23					3	3
	P4841C-6R-E57	4	12,24	4,87	0,7	11°	90°					33	;	*	3	4	23					23	23
	P4841C-7R-E57	4	14,69	5,53	0,8	11°	90°					33	:	*	3	4	23					3	23
	P4841C-8R-E57	4	17,49	5,53	1	11°	90°					23	;	3	3	4	33						
	P4840C-1R-E67	4	4,9	1,96	0,29	11°	90°		0			33	;	3 (3	•	23			(2)		3	88 88 88
	P4840C-2R-E67	4	5,95	2,38	0,34	11°	90°		•			23	;	3	3	•	33					3	3
-23	P4840C-3R-E67	4	7	2,8	0,4	11°	90°		•			33	;	*	3	•	23					3	33
	P4840C-4R-E67	4	8,4	3,36	0,48	11°	90°		•			33	;		3	•	33					3	33
	P4840C-5R-E67	4	10,29	4,12	0,59	11°	90°		•			3	;	*	3	•	23		_			3	3
	P4840C-6R-E67	4	12,24	4,87	0,7	11°	90°		•		-	3	;		_	•	23						3
	P4840C-7R-E67	4	14,69	5,53	0,8	11°	90°		•			3	;	*	3	•	23						33
	P4840C-8R-E67	4	17,49	5,53	1	11°	90°		•		33	_	-	*	_	•	_		_	_		3	



Пластины квадратные P284..

Tiger-tec® Gold


		ō Ā							Р			N	Л		K		١	1		S	
		, wod							НС			Н	C		НС		Н	С		HC	:
	Обозначение	Кол-во режущих кромок	l MM	S MM	α	ε	WKP25S	WKP35S	WSP45S	WSP456	WXP40	WSP45S	WSP436 WXP40	WKP25S	WKP35S	WXP40	WK40	WSP456	WK40	WSP45S	WSP456
	P2840S-1N-A57	4	6,35	2,38	14°	90°		3	3	*	33		3 %		33	33				(2)	3
	P2840S-2N-A57	4	7,8	3,18	14°	90°		3	33	*	23		3 🕱		33	33					3
	P2840S-3N-A57	4	9,52	3,97	11°	96°		3	33		33		3 3		33	33					
	P2840S-4N-A57	4	11	3,97	11°	96°		3	33	*	23		3 🕱		33	33					3
	P2840S-5N-A57	4	12,7	4,76	11°	96°		3	33	*	33		3		33	33					3
	P2840S-6N-A57	4	15	4,76	11°	96°		3		*		_	3		33						
	P2840S-7N-A57	4	17,6	5,56	11°	96°		3		*		8	3		33					1	
1	P2840S-1N-E67	4	6,35	2,38	14°	90°		3	33	*	33	33 2	3 (:	33	33	33		23	33	*
	P2840S-2N-E67	4	7,8	3,18	14°	90°	-					*			33						3
(222-4	P2840S-3N-E67	4	9,52	3,97	11°	96°							3 🕱	;	33						
	P2840S-4N-E67	4	11	3,97	11°	96°			33	_		_	3 3	:	33	33	33				3
	P2840S-5N-E67	4	12,7	4,76	11°	96°		_	33			3	_		33			\rightarrow			
	P2840S-6N-E67	4	15	4,76	11°	96°		_	33	*		_	3		33		33	$\overline{}$			
	P2840S-7N-E67	4	17,6	5,56	11°	96°	$\overline{}$			*		3			*		33				
	P2841S-1N-A57	4	6,35	2,38	14°	90°	•	$\overline{}$	33	*		39 8	3 2		33	23					3
	P2841S-2N-A57	4	7,8	3,18	14°	90°	$\overline{}$	_	33			3				33			-		
CONTRACT OF STREET	P2841S-3N-A57	4	9,52	3,97	11°	96°	•	#	33			3								3	3
	P2841S-4N-A57	4	11	3,97	11°	96°	-	_	33			3							-		
	P2841S-5N-A57	4	12,7	4,76	11°	96°	•	_	33	_	_	3	_		-	-			-		
	P2841S-6N-A57	4	15	4,76	11°	96°	•	(3)			33	8									3
	P2841S-7N-A57	4	17,6	5,56	11°	96°		(3)			33		3 (3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P2841S-1N-E57	4	6,35	2,38	14°	90°	_	_	23				3 2		-	_					*
	P2841S-2N-E57	4	7,8	3,18	14°	90°			33			3 9				33				33	3
2	P2841S-3N-E57	4	9,52	3,97	11°	96°	$\overline{}$	_	33			*				33			-		*
	P2841S-4N-E57	4	11	3,97	11°	96°										_					
	P2841S-5N-E57	4	12,7	4,76	11°	96°		_	-		33	_		(2)	-				-		
	P2841S-6N-E57	4	15	4,76	11°	96°	$\overline{}$	*			23		3 2			33					
	P2841S-7N-E57	4	17,6	5,56	11°	96°		(2)			33		3 3		*	_					3
1	P2841S-1N-E67	4	6,35	2,38	14°	90°	$\overline{}$	_			33		3 2		33	_					3
	P2841S-2N-E67	4	7,8	3,18	14°	90°	$\overline{}$	_	_			_	3 2	_	23	_			-		
CEEE !	P2841S-3N-E67	4	9,52	3,97	11°	96°	$\overline{}$						3 2			33					
	P2841S-4N-E67	4	11	3,97	11°	96°	$\overline{}$	_				_	3 25	_	23	_			-		
	P2841S-5N-E67	4	12,7	4,76	11°	96°						_	3 25	_	33	_			-		
	P2841S-6N-E67	4	15	4,76	11°	96°		*			33	_	3 2	_	33	33					
	P2841S-7N-E67	4	17,6	5,56	11°	96°		•			23	_	3 2		33	33					

Пластины **LCMX**

Tiger-tec® Gold

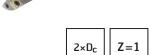
Пластинь	I																								
		кромок									P HC				M HC			K			N HC			s IC	
	Обозначение	Кол-во режущих к	I MM	I ₂	S MM	α	Ь	ε	WKP25S	WKP35S	WSP45S	WSP456	WXP40	WSP45S	WSP456	WXP40	WAK15	WKP255	WKP35S	WAP40	WSP45S	WSP456	WSP45S	WSP456	WXP40
	LCMX050203-B57	2	4	5,2	2,38	7°	0,6	90°	•		3	*	33	*	3	3	•	3	39 2	3		\$	3	13	
B 6	LCMX06T204-B57	2	5,2	6,6	2,78	7°	0,8	90°	•		3	*				3			39 2	3		1	3	\$	
	LCMX050203-D57	2	4	5,2	2,38	7°	0,6	90°	•		3					33		39 (2	3	3		\$	3	\$	
	LCMX06T204-D57	2	5,2	6,6	2,78	7°	0,8	90°	•		3					33		39 (2	3	3		\$	3	\$	
8	LCMX050203-E57	2	4	5,2	2,38	7°	0,6	90°	•		*					33		39 (3	3	3	3	3	\$	
E L	LCMX06T204-E57	2	5,2	6,6	2,78	7°	0,8	90°	•		3					3	•	39 (2	3	3	3	3	3	3	
11																									

НС = твёрдый сплав с покрытием

Trigon WOMX / WOEX

Tiger-tec® Gold

Пластинь	ı																				
		кромок							P HC			H				K IC		N HC		S HC	
	Обозначение	Кол-во режущих кромок	l MM	S MM	r MM	d MM	WKP25S	WKP35S	WSP45S	WSP456	WXP40	WSP45S WSP45G	WXP40	WAK15	WKP25S	WKP35S	WXP40	WSP456	WSP45S	WSP456	WXP40
	W0MX030204-B57	3	3,31	2,3	0,4	5		(3)				2	;			33			1		
	W0MX040304-B57	3	4,2	3,18	0,4	6,35						2	3			*			1		
	WOMX05T304-B57	3	5,29	3,8	0,4	8						2	1			33			1		
	WOMX06T304-B57	3	6,62	3,8	0,4	10		49				2	1			33			1		
	WOMX080408-B57	3	7,94	4,8	0,8	12						2	;			33			1		
	W0MX100508-B57	3	9,92	5,3	0,8	15		49				2	1			33			1		
	WOMX120608-B57	3	11,64	6	0,8	17,5						2	1			33			1		
	WOMX030204-D57	3	3,31	2,3	0,4	5		(3)			33	1	3			33	33		1		
	WOMX040304-D57	3	4,2	3,18	0,4	6,35					33	2		;		*			1		
	WOMX05T304-D57	3	5,29	3,8	0,4	8					33	1		0		33			1		
	WOMX06T304-D57	3	6,62	3,8	0,4	10	•				33	2		0		*			1		
	WOMX080408-D57	3	7,94	4,8	0,8	12	®				33	2		0	(2)	33			1		
	WOMX100508-D57	3	9,92	5,3	0,8	15	•					2	3	0		3			1		
	WOMX120608-D57	3	11,64	6	0,8	17,5	•				33	2	3	0	(2)	*			1		
TO Y	W0EX030204-E57	3	3,31	2,3	0,4	5		49				2	3						1		
	W0EX040304-E57	3	4,2	3,18	0,4	6,35	®					2									
	W0EX05T304-E57	3	5,29	3,8	0,4	8	•					2									
	W0EX06T304-E57	3	6,62	3,8	0,4	10	®	49				2	ì	0					1	3	
	W0EX080408-E57	3	7,94	4,8	0,8	12	•	49				2	1						1	3	
	W0EX100508-E57	3	9,92	5,3	0,8	15						2	}						1		
	W0EX120608-E57	3	11,64	6	0,8	17,5						2	1						1		


Обзор программы свёрл с пластинами Свёрла с пластинами

Глубина сверления	2 x D _c	3 x D _c	4 x D _c	5 x D _c
Обозначение	D4120.02	D4120.03	D4120.04	D4120.05
Диапазон Ø [мм]	13,5-41,3	13,5-41,3	16,7-41,3	16,7-41,3
Стр.	96	100	104	108

Свёрла с пластинами D4120.02 inch

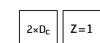
	Р	М	K	N	S	Н	0
D4120.02	••	••	••	•	••		

Инструмент	Обозначение	D _c дюйм	L _c дюйм	I ₄ дюйм	l ₅ дюйм	d ₁ дюйм	d ₄ дюйм	lbs	Кол-во пластин	Тип
Цилиндрический хвостовик с лыской	★ D4120.02-13.49F19-P41	0,531	1,062	1,849	2,031	0,750	1,125	0,51	1 1	
D _c d ₁ d ₂ d ₃ d ₄	★ D4120.02-13.89F19-P41	0,547	1,094	1,881	2,031	0,750	1,125	0,51	1 1	
	★ D4120.02-14.27F19-P41	0,562	1,124	1,911	2,031	0,750	1,125	0,52	1 1	
- - - - - - - - - -	★ D4120.02-14.68F19-P41	0,578	1,156	1,943	2,031	0,750	1,125	0,52	1 1	P484 . P-1R P484 . C-1R
	★ D4120.02-15.09F19-P41	0,594	1,188	1,975	2,031	0,750	1,125	0,52	1 1	
	★ D4120.02-15.47F19-P41	0,609	1,218	2,005	2,031	0,750	1,125	0,53	1 1	
	★ D4120.02-15.88F19-P41	0,625	1,250	2,037	2,031	0,750	1,125	0,54	1 1	
Цилиндрический хвостовик с лыской	★ D4120.02-16.66F26-P42	0,656	1,312	2,310	2,281	1,000	1,375	0,93	1 1	
D _c d ₁ d ₁ d ₂	★ D4120.02-17.04F26-P42	0,671	1,342	2,340	2,281	1,000	1,375	0,94	1 1	
	★ D4120.02-17.45F26-P42	0,687	1,374	2,370	2,281	1,000	1,375	0,77	1 1	
14 15	★ D4120.02-17.86F26-P42	0,703	1,406	2,410	2,281	1,000	1,375	0,95	1 1	P484 . P-2R
	★ D4120.02-18.24F26-P42	0,718	1,436	2,440	2,281	1,000	1,375	0,98	1 1	P484 . C-2R
	★ D4120.02-19.05F26-P42	0,750	1,500	2,500	2,281	1,000	1,375	0,99	1 1	
	★ D4120.02-19.43F26-P42	0,765	1,530	2,530	2,281	1,000	1,375	1,00	1 1	
	★ D4120.02-19.84F26-P42	0,781	1,562	2,560	2,281	1,000	1,375	0,88	1 1	
	★ D4120.02-20.62F26-P43	0,812	1,624	2,620	2,281	1,000	1,375	1,03	1 1	
D _c d ₁ d ₂	★ D4120.02-21.41F26-P43	0,843	1,686	2,690	2,281	1,000	1,375	1,04	1 1	
	★ D4120.02-22.23F31-P43	0,875	1,750	2,880	2,281	1,250	1,625	1,48	1 1	P484 . P-3R
14 15	★ D4120.02-23.01F31-P43	0,906	1,812	2,940	2,281	1,250	1,625	1,51	1 1	P484 . C-3R
	★ D4120.02-23.39F31-P43	0,921	1,842	2,970	2,281	1,250	1,625	1,53	1 1	
	★ D4120.02-23.80F31-P43	0,937	1,874	3,000	2,281	1,250	1,625	1,50	1 1	

Сборочные детали входят в комплект поставки

Сборочные	9						
детали	D _c [дюйм]	0,531-0,625	0,656-0,781	0,812-0,937	0,968-1,125	1,171-1,375	1,421-1,625
	Винт пластины Момент затяжки	FS2120 (Torx 6IP) 0,4 Нм	FS2111 (Torx 7IP) 0,9 Нм	FS1454 (Torx 8IP) 1,2 Нм	FS1457 (Torx 9IP) 2,0 Нм	FS2080 (Torx 15IP) 2,5 Нм	FS1453 (Torx 15IP) 3,5 Нм

Комплектующие	D _c [дюйм]	0,531-0,625	0,656-0,781	0,812-0,937	0,968-1,125	1,171-1,625
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2004 1,5-5,0 Нм	FS2004 1,5–5,0 Нм
339	Рукоятка динамометрической отвёртки, цифровая Момент затяжки			FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм
	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)	FS2012 (Torx 8IP)	FS2013 (Torx 9IP)	FS2014 (Torx 15IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)	FS1483 (Torx 8IP)	FS1484 (Torx 9IP)	FS1485 (Torx 15IP)


Пластины																		
					Р				М		K			N			S	
					НС			ŀ	IC		НС			НС			НС	
	Обозначение	Размер	WKP25S	WKP35S	WSP45	WSP456	WXP40	WSP45	WSP456	WKP25S	WKP35S	WXP40	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40
	P4840PR-A57	1-3	49	33	3	33	;		1 3	Œ	33					33		
	P4840PR-E57	1-3	•		*	33	;		13	E	33					33	*	
	P4840PR-E67	1-3	•		*	33	;		13	E	33					33	*	
	P4841PR-A57	1-3		33	3	33	,		13	E	33					33		
	P4841PR-E57	1-3	3	(3)	3	33			13	E	33					33		
	P4840CR-E67	1-3		•		33	33	1	\$	3	1	33			(3)		*	33
	P4841CR-A57	1-3		(3)				1	B	3	33	3						
	P4841CR-E57	1–3					33	1	B 8	3		33						

Свёрла с пластинами D4120.02 inch

Р	М	K	N	S	Н	0
••	••	••	•	••		
					P M K N S	1 111 11 11 3 11

Инструмент	Обозначение	D _c дюйм	L _c дюйм	l ₄ дюйм	l ₅ дюйм	d ₁ дюйм	d ₄ дюйм	lbs	Кол-во пластин	Тип
Цилиндрический хвостовик с лыской	★ D4120.02-24.59F31-P44	0,968	1,936	3,070	2,281	1,250	1,625	1,57	1 1	
D _c d ₁ d ₁ d ₂	★ D4120.02-24.99F31-P44	0,984	1,968	3,100	2,281	1,250	1,625	1,59	1 1	
01 04	★ D4120.02-25.40F31-P44	1,000	2,000	3,130	2,281	1,250	1,625	1,61	1 1	
14 15	★ D4120.02-26.57F31-P44	1,046	2,092	3,220	2,281	1,250	1,625	1,59	1 1	P484 . P-4R P484 . C-4R
	★ D4120.02-26.97F31-P44	1,062	2,124	3,250	2,281	1,250	1,625	1,61	1 1	
	★ D4120.02-28.17F31-P44	1,109	2,218	3,350	2,281	1,250	1,625	1,66	1 1	
	★ D4120.02-28.58F31-P44	1,125	2,250	3,380	2,281	1,250	1,625	1,72	1 1	
	★ D4120.02-29.74F31-P45	1,171	2,342	3,470	2,281	1,250	1,625	1,70	1 1	
D _c d ₁ d ₂ d ₃	★ D4120.02-30.15F31-P45	1,187	2,374	3,500	2,281	1,250	1,625	1,74	1 1	
of ut	★ D4120.02-31.75F31-P45	1,250	2,500	3,630	2,281	1,250	1,625	1,81	1 1	P484 . P-5R
14 15	★ D4120.02-33.32F31-P45	1,312	2,624	3,750	2,281	1,250	1,625	1,90	1 1	P484 . C-5R
	★ D4120.02-34.11F31-P45	1,343	2,686	3,820	2,281	1,250	1,625	1,95	1 1	
	★ D4120.02-34.93F31-P45	1,375	2,750	3,880	2,281	1,250	1,625	1,99	1 1	
Цилиндрический хвостовик с лыской	★ D4120.02-36.09F31-P46	1,421	2,842	3,970	2,281	1,250	1,625	1,97	1 1	
D _C d ₁ d ₂ d ₃	★ D4120.02-36.50F38-P46	1,437	2,874	4,250	2,688	1,500	1,940	2,86	1 1	
DC UI UI UI	★ D4120.02-38.10F38-P46	1,500	3,000	4,380	2,688	1,500	1,940	3,00	1 1	P484 . P-6R P484 . C-6R
	★ D4120.02-39.67F38-P46	1,562	3,124	4,500	2,688	1,500	1,940	3,10	1 1	
	★ D4120.02-41.28F38-P46	1,625	3,250	4,630	2,688	1,500	1,940	3,38	1 1	

Сборочные детали входят в комплект поставки

Сборочные детали	Э D _c [дюйм]	0,531-0,625	0,656-0,781	0,812-0,937	0,968-1,125	1,171–1,375	1,421–1,625
	Винт пластины	FS2120 (Torx 6IP)	FS2111 (Torx 7IP)	FS1454 (Torx 8IP)	FS1457 (Torx 9IP)	FS2080 (Torx 15IP)	FS1453 (Torx 15IP)
	Момент затяжки	0,4 HM	0,9 HM	1,2 HM	2,0 HM	2,5 HM	3,5 Нм

Комплектующие	D _c [дюйм]	0,531-0,625	0,656-0,781	0,812-0,937	0,968-1,125	1,171-1,625
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2004 1,5-5,0 Нм	FS2004 1,5–5,0 Нм
339	Рукоятка динамометрической отвёртки, цифровая Момент затяжки			FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм
	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)	FS2012 (Torx 8IP)	FS2013 (Torx 9IP)	FS2014 (Torx 15IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)	FS1483 (Torx 8IP)	FS1484 (Torx 9IP)	FS1485 (Torx 15IP)

Пластины																		
					Р			1	Л		K			N			S	
					НС			H	C		НС			НС		ı	НС	
	Обозначение	Размер	WKP25S	WKP35S	WSP45	WSP456	WXP40	WSP45	WSP430	WKP25S	WKP35S	WXP40	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40
	P4840PR-A57	4-6	4	33	33	33	1	3 (3	(3)	33					33		
	P4840PR-E57	4-6	0	(4)	33	33	1	*	\$	49	33					33		
	P4840PR-E67	4-6	•	(4)	33		1	*	\$	(3)	23					33	3	
	P4841PR-A57	4-6	4	33	33	33	1	*	\$	49	33					23		
	P4841PR-E57	4-6	•		33		1	33	3	49	33					33		
	P4840CR-E67	4-6		0		33		1	3 21	;	•	33				1		
	P4841CR-A57	4-6		(4)				1	\$	3	33	3						
	P4841CR-E57	4-6		(2)		(3)		1	\$;	(4)					1		

Z=1

Свёрла с пластинами D4120.03 inch

 $3 \times D_{\text{C}}$

	Р	М	K	N	S	Н	0
D4120.03	••	••	••	•	••		

Инструмент	Обозначение	D _c дюйм	L _c дюйм	I ₄ дюйм	I ₅ дюйм	d ₁ дюйм	d ₄ дюйм	lbs	Кол-во пластин	Тип
Цилиндрический хвостовик с лыской .	★ D4120.03-13.49F19-P41	0,531	1,593	2,380	2,031	0,750	1,125	0,52	1 1	
D _C d ₁ d ₁ d ₄	★ D4120.03-13.89F19-P41	0,547	1,641	2,428	2,031	0,750	1,125	0,53	1 1	
Lc	D4120.03-14.27F19-P41	0,562	1,686	2,473	2,031	0,750	1,125	0,53	1 1	
 4 5	D4120.03-14.68F19-P41	0,578	1,734	2,521	2,031	0,750	1,125	0,54	1 1	P484 . P-1R P484 . C-1R
	★ D4120.03-15.09F19-P41	0,594	1,782	2,569	2,031	0,750	1,125	0,55	1 1	
	★ D4120.03-15.47F19-P41	0,609	1,827	2,614	2,031	0,750	1,125	0,55	1 1	
	D4120.03-15.88F19-P41	0,625	1,875	2,662	2,031	0,750	1,125	0,56	1 1	
	D4120.03-16.66F26-P42	0,656	1,968	2,970	2,281	1,000	1,375	0,95	1 1	
D _C d ₁ d ₄	★ D4120.03-17.04F26-P42	0,671	2,013	3,010	2,281	1,000	1,375	0,98	1 1	
1 Lc	★ D4120.03-17.45F26-P42	0,687	2,061	3,060	2,281	1,000	1,375	0,97	1 1	
 	★ D4120.03-17.86F26-P42	0,703	2,109	3,110	2,281	1,000	1,375	1,02	1 1	P484 . P-2R
	★ D4120.03-18.24F26-P42	0,718	2,154	3,150	2,281	1,000	1,375	1,01	1 1	P484 . C-2R
	D4120.03-19.05F26-P42	0,750	2,250	3,250	2,281	1,000	1,375	1,01	1 1	
	★ D4120.03-19.43F26-P42	0,765	2,295	3,300	2,281	1,000	1,375	1,04	1 1	
	D4120.03-19.84F26-P42	0,781	2,343	3,340	2,281	1,000	1,375	1,04	1 1	
Цилиндрический хвостовик с лыской	D4120.03-20.62F26-P43	0,812	2,436	3,440	2,281	1,000	1,375	1,04	1 1	
$ \begin{array}{c c} \hline D_c & \hline \end{array} $	D4120.03-21.41F26-P43	0,843	2,529	3,530	2,281	1,000	1,375	1,06	1 1	
10101	D4120.03-22.23F31-P43	0,875	2,625	3,760	2,281	1,250	1,625	1,56	1 1	P484 . P-3R
 4	★ D4120.03-23.01F31-P43	0,906	2,718	3,850	2,281	1,250	1,625	1,60	1 1	P484 . C-3R
	★ D4120.03-23.39F31-P43	0,921	2,763	3,890	2,281	1,250	1,625	1,62	1 1	
	★ D4120.03-23.80F31-P43	0,937	2,811	3,940	2,281	1,250	1,625	1,64	1 1	

Сборочные детали входят в комплект поставки

Сборочные	е						
детали	D _c [дюйм]	0,531-0,625	0,656-0,781	0,812-0,937	0,968-1,125	1,171-1,375	1,421-1,625
	Винт пластины Момент затяжки	FS2120 (Torx 6IP) 0,4 Нм	FS2111 (Torx 7IP) 0,9 Нм	FS1454 (Torx 8IP) 1,2 Hm	FS1457 (Torx 9IP) 2,0 Hm	FS2080 (Torx 15IP) 2,5 Нм	FS1453 (Torx 15IP) 3,5 Нм

Комплектующие	D _c [дюйм]	0,531-0,625	0,656-0,781	0,812-0,937	0,968-1,125	1,171-1,625
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2004 1,5-5,0 Нм	FS2004 1,5–5,0 Нм
333	Рукоятка динамометрической отвёртки, цифровая Момент затяжки			FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм
	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)	FS2012 (Torx 8IP)	FS2013 (Torx 9IP)	FS2014 (Torx 15IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)	FS1483 (Torx 8IP)	FS1484 (Torx 9IP)	FS1485 (Torx 15IP)

Пластины																			
					Р				М			K			N			S	
					НС				НС			НС			НС		ſ	НС	
	Обозначение	Размер	WKP25S	WKP35S	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40	WKP25S	WKP35S	WXP40	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40
	P4840PR-A57	1-3	(2)	33	(3)	3	;	33	3	-	(2)	33					23	3	
	P4840PR-E57	1-3	•	(3)			;		33	(33		
(33)	P4840PR-E67	1-3	•				;		33	(33		
	P4841PR-A57	1-3	(4)	33			;		33	(33		
	P4841PR-E57	1-3	•			33	;		23								33		
	P4840CR-E67	1-3		•			33		33	33		0	33				;	3	23
	P4841CR-A57	1-3		(3)			33		33	33							,	3	33
							33					(2)						33	

Свёрла с пластинами D4120.03 inch

	Р	М	K	N	S	Н	0
D4120.03	••	••	••	•	••		

Инструмент	Обозначение	D _c дюйм	L _c дюйм	l ₄ дюйм	I ₅ дюйм	d ₁ дюйм	d ₄ дюйм	lbs	Кол-во пластин	Тип
Цилиндрический хвостовик с лыской	★ D4120.03-24.59F31-P44	0,968	2,904	4,030	2,281	1,250	1,625	1,69	1 1	
D _C d ₁ d ₁ d ₄	★ D4120.03-24.99F31-P44	0,984	2,952	4,080	2,281	1,250	1,625	1,70	1 1	
Lc	D4120.03-25.40F31-P44	1,000	3,000	4,130	2,281	1,250	1,625	1,68	1 1	
	★ D4120.03-26.57F31-P44	1,046	3,138	4,270	2,281	1,250	1,625	1,73	1 1	P484 . P-4R P484 . C-4R
	D4120.03-26.97F31-P44	1,062	3,186	4,320	2,281	1,250	1,625	1,76	1 1	
	★ D4120.03-28.17F31-P44	1,109	3,327	4,459	2,281	1,250	1,625	1,83	1 1	
	D4120.03-28.58F31-P44	1,125	3,375	4,509	2,281	1,250	1,625	1,86	1 1	
Цилиндрический хвостовик с лыской	★ D4120.03-29.74F31-P45	1,171	3,513	4,640	2,281	1,250	1,625	1,90	1 1	
D _C d ₁ d ₂ d ₃ d ₄	★ D4120.03-30.15F31-P45	1,187	3,561	4,690	2,281	1,250	1,625	1,92	1 1	
L _C	D4120.03-31.75F31-P45	1,250	3,750	4,880	2,281	1,250	1,625	2,06	1 1	P484 . P-5R
14 15	D4120.03-33.32F31-P45	1,312	3,936	5,070	2,281	1,250	1,625	2,20	1 1	P484 . C-5R
	★ D4120.03-34.11F31-P45	1,343	4,029	5,160	2,281	1,250	1,625	2,27	1 1	
	D4120.03-34.93F31-P45	1,375	4,125	5,260	2,281	1,250	1,625	2,34	1 1	
Цилиндрический хвостовик с лыской	★ D4120.03-36.09F31-P46	1,421	4,263	5,390	2,281	1,250	1,625	2,33	1 1	
D _C d ₁ d ₁ d ₄	★ D4120.03-36.50F38-P46	1,437	4,311	5,690	2,688	1,500	1,940	3,31	1 1	
L _C	★ D4120.03-38.10F38-P46	1,500	4,500	5,880	2,688	1,500	1,940	3,49	1 1	P484 . P-6R P484 . C-6R
	★ D4120.03-39.67F38-P46	1,562	4,686	6,070	2,688	1,500	1,940	3,68	1 1	
	★ D4120.03-41.28F38-P46	1,625	4,875	6,260	2,688	1,500	1,940	3,89	1 1	

Сборочные детали входят в комплект поставки

Сборочные	9						
детали	D _c [дюйм]	0,531-0,625	0,656-0,781	0,812-0,937	0,968-1,125	1,171-1,375	1,421-1,625
	Винт пластины Момент затяжки	FS2120 (Torx 6IP) 0,4 Нм	FS2111 (Torx 7IP) 0,9 Нм	FS1454 (Torx 8IP) 1,2 Нм	FS1457 (Torx 9IP) 2,0 Нм	FS2080 (Torx 15IP) 2,5 Нм	FS1453 (Torx 15IP) 3,5 Нм

Комплектующие	D _c [дюйм]	0,531-0,625	0,656-0,781	0,812-0,937	0,968-1,125	1,171-1,625
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2004 1,5-5,0 Нм	FS2004 1,5–5,0 Нм
339	Рукоятка динамометрической отвёртки, цифровая Момент затяжки			FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм
	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)	FS2012 (Torx 8IP)	FS2013 (Torx 9IP)	FS2014 (Torx 15IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)	FS1483 (Torx 8IP)	FS1484 (Torx 9IP)	FS1485 (Torx 15IP)

Пластины																		
					Р			М			K			N			S	
					НС			НС			НС			НС		ſ	НС	
	Обозначение	Размер	WKP25S	WKP35S	WSP45	WSP456	WSP45	WSP456	WXP40	WKP25S	WKP35S	WXP40	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40
	P4840PR-A57	4-6	(4)	33	3	3	ă	33		(3)	33					23		
	P4840PR-E57	4-6	•		33	33	E	3			*					33		
	P4840PR-E67	4-6	•		33	33	3	3			*					33		
	P4841PR-A57	4-6	(3)	33	33	33	E	3			*					33		
	P4841PR-E57	4-6	0	(3)	33	33	Œ	3			3					23		
	P4840CR-E67	4-6		0		33 §	3	33	33		®					;		
	P4841CR-A57	4-6				#	3	33			3							23
	P4841CR-E57	4–6				#	3	(3)				*				;		

Z=1

Свёрла с пластинами D4120.04 inch

 $4{\times}D_{C}$

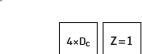
	Р	М	K	N	S	Н	0
D4120.04	••	•	••	•	•		

Инструмент	Обозначение	D _c дюйм	L _c дюйм	I ₄ дюйм	I ₅ дюйм	d ₁ дюйм	d ₄ дюйм	Ibs	Кол-во пластин	Тип
Цилиндрический хвостовик с лыской .	★ D4120.04-16.66F26-P42	0,656	2,624	3,620	2,281	1,000	1,375	1,03	1 1	
D_c $d_1 d_4$	★ D4120.04-17.04F26-P42	0,671	2,684	3,680	2,281	1,000	1,375	1,04	1 1	
L _C	★ D4120.04-17.45F26-P42	0,687	2,748	3,750	2,281	1,000	1,375	1,00	1 1	
14 7 15 7	★ D4120.04-17.86F26-P42	0,703	2,812	3,810	2,281	1,000	1,375	1,05	1 1	P484 . P-2R
	★ D4120.04-18.24F26-P42	0,718	2,872	3,870	2,281	1,000	1,375	1,03	1 1	P484 . C-2R
	★ D4120.04-19.05F26-P42	0,750	3,000	4,000	2,281	1,000	1,375	1,10	1 1	
	★ D4120.04-19.43F26-P42	0,765	3,060	4,060	2,281	1,000	1,375	1,07	1 1	
	★ D4120.04-19.84F26-P42	0,781	3,124	4,120	2,281	1,000	1,375	1,13	1 1	
Цилиндрический хвостовик с лыской	D4120.04-20.62F26-P43	0,812	3,248	4,250	2,281	1,000	1,375	1,08	1 1	
D _c d _{1 d₄}	★ D4120.04-21.41F26-P43	0,843	3,372	4,370	2,281	1,000	1,375	1,19	1 1	
L _C	D4120.04-22.23F31-P43	0,875	3,500	4,630	2,281	1,250	1,625	1,65	1 1	P484 . P-3R
ן - פי דן - יי	★ D4120.04-23.01F31-P43	0,906	3,624	4,750	2,281	1,250	1,625	1,71	1 1	P484 . C-3R
	★ D4120.04-23.39F31-P43	0,921	3,684	4,810	2,281	1,250	1,625	1,72	1 1	
	D4120.04-23.80F31-P43	0,937	3,748	4,880	2,281	1,250	1,625	1,74	1 1	
	★ D4120.04-24.59F31-P44	0,968	3,872	5,000	2,281	1,250	1,625	1,81	1 1	
D _c d _{1 d₄}	D4120.04-24.99F31-P44	0,984	3,936	5,070	2,281	1,250	1,625	1,79	1 1	
L _c	D4120.04-25.40F31-P44	1,000	4,000	5,130	2,281	1,250	1,625	1,81	1 1	
14 7 15 7	★ D4120.04-26.57F31-P44	1,046	4,184	5,309	2,281	1,250	1,625	1,90	1 1	P484 . P-4R P484 . C-4R
	D4120.04-26.97F31-P44	1,062	4,248	5,380	2,281	1,250	1,625	1,92	1 1	
	★ D4120.04-28.17F31-P44	1,109	4,436	5,570	2,281	1,250	1,625	2,02	1 1	
	★ D4120.04-28.58F31-P44	1,125	4,500	5,630	2,281	1,250	1,625	1,97	1 1	

Сборочные детали входят в комплект поставки

Сборочные детали	D _c [дюйм]	0,656-0,781	0,812-0,937	0,968-1,125	1,171–1,375	1,421-1,625
	Винт пластины	FS2111 (Torx 7IP)	FS1454 (Torx 8IP)	FS1457 (Torx 9IP)	FS2080 (Torx 15IP)	FS1453 (Torx 15IP)
	Момент затяжки	0,9 HM	1,2 Нм	2,0 HM	2,5 Нм	3,5 Нм

Комплектующие	D _c [дюйм]	0,656-0,781	0,812-0,937	0,968-1,125	1,171-1,625
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2004 1,5-5,0 Нм	FS2004 1,5–5,0 Нм
333	Рукоятка динамометрической отвёртки, цифровая Момент затяжки		FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм
	Вставка	FS2011 (Torx 7IP)	FS2012 (Torx 8IP)	FS2013 (Torx 9IP)	FS2014 (Torx 15IP)
	Отвёртка	FS2088 (Torx 7IP)	FS1483 (Torx 8IP)	FS1484 (Torx 9IP)	FS1485 (Torx 15IP)


Пластины																		
					Р			М			K			N			S	
					HC			НС			НС			НС			НС	
	Обозначение	Размер	WKP25S	WKP35S	WSP45	WSP456 WXP40	WSP45	WSP456	WXP40	WKP25S	WKP35S	WXP40	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40
	P4840PR-A57	2–4	49	33	33	\$	33	3		(3)	33					33		
	P4840PR-E57	2–4			33											33		
	P4840PR-E67	2–4	•		33	3	33	33		(3)	33		69			33		
	P4841PR-A57	2–4	49	33	33	1 3	23	33			33					33		
	P4841PR-E57	2–4	•		33	3	33	33		(3)						33		
	P4840CR-E67	2–4		•	1	3	1	33			®						3	33
	P4841CR-A57	2–4		(3)		3												23
	P4841CR-E57	2–4			1	3	t					*					\$	

Свёрла с пластинами D4120.04 inch

			Р	М	K	N	S	Н	0
D4120.04			••	•	••	•	•		
I ₄ дюйм	I ₅ дюйм	d ₁ дюйм	d ₄ дюйм		lbs	Кол-	во гин Ти	4П	
5,810	2,281	1,250	1,6	25	2,13	1			

Инструмент	Обозначение	D _c дюйм	L _c дюйм	I ₄ дюйм	I ₅ дюйм	d ₁ дюйм	d ₄ дюйм	lbs	Кол-во пластин	Тип		
Цилиндрический хвостовик с лыской .	★ D4120.04-29.74F31-P45	1,171	4,684	5,810	2,281	1,250	1,625	2,13	1 1			
D _c d ₁ d ₄	D4120.04-30.15F31-P45	1,187	4,748	5,880	2,281	1,250	1,625	2,16	1 1			
L _c 15 -	D4120.04-31.75F31-P45	1,250	5,000	6,130	2,281	1,250	1,625	2,31	1 1	P484 . P-5R		
14 2 15 2	★ D4120.04-33.32F31-P45	1,312	5,248	6,380	2,281	1,250	1,625	2,51	1 1	P484 . C-5R		
	★ D4120.04-34.11F31-P45	1,343	5,372	6,496	2,281	1,250	1,625	2,36	1 1			
	D4120.04-34.93F31-P45	1,375	5,500	6,630	2,281	1,250	1,625	2,69	1 1			
Цилиндрический хвостовик с лыской	★ D4120.04-36.09F31-P46	1,421	5,684	6,810	2,281	1,250	1,625	2,39	1 1			
D _c d ₁ d ₄	★ D4120.04-36.50F38-P46	1,437	5,748	7,130	2,688	1,500	1,940	3,65	1 1			
t Lc	★ D4120.04-38.10F38-P46	1,500	6,000	7,380	2,688	1,500	1,940	3,88	1 1	P484 . P-6R P484 . C-6R		
4 4 5	★ D4120.04-39.67F38-P46	1,562	6,248	7,630	2,688	1,500	1,940	4,14	1 1			
	★ D4120.04-41.28F38-P46	1,625	6,500	7,880	2,688	1,500	1,940	4,42	1 1			

Сборочные детали входят в комплект поставки

Сборочные детали	D _c [дюйм]	0,656-0,781	0,812-0,937	0,968-1,125	1,171–1,375	1,421-1,625
	Винт пластины	FS2111 (Torx 7IP)	FS1454 (Torx 8IP)	FS1457 (Torx 9IP)	FS2080 (Torx 15IP)	FS1453 (Torx 15IP)
	Момент затяжки	0,9 Нм	1,2 Hm	2,0 HM	2,5 Нм	3,5 Нм

Комплектующие	D _c [дюйм]	0,656-0,781	0,812-0,937	0,968-1,125	1,171–1,625
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2004 1,5-5,0 Нм	FS2004 1,5-5,0 Нм
333	Рукоятка динамометрической отвёртки, цифровая Момент затяжки		FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм
	Вставка	FS2011 (Torx 7IP)	FS2012 (Torx 8IP)	FS2013 (Torx 9IP)	FS2014 (Torx 15IP)
	Отвёртка	FS2088 (Torx 7IP)	FS1483 (Torx 8IP)	FS1484 (Torx 9IP)	FS1485 (Torx 15IP)

Пластины																		
					Р				М		-	K		N			S	
					НС			ı	НС		Н	IC		НС			НС	
	Обозначение	Размер	WKP25S	WKP35S	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40	WKP25S	WKP355	WXP40	WSP456	WXP40	WSP45	WSP456	WXP40
	P4840PR-A57	5–6	49	33	33	33		23		(3	\$				33	33	
	P4840PR-E57	5–6	0	(4)	3	33		23		(29 8	3				*	*	
	P4840PR-E67	5-6	0	(3)		33		23		(29 8	\$	Œ	()	33		
	P4841PR-A57	5–6	(3)	33	33	3		23		(29 2	3				33	33	
	P4841PR-E57	5-6	0		3	3		23		(29 8	3				33	*	
	P4840CR-E67	5–6		•		3		1		E	6	9 8	13	4	(4)			33
8	P4841CR-A57	5-6				*		1			1	\$	1 3					
	P4841CR-E57	5–6				33		1	3	*	•	9 (1				33	

НС = твёрдый сплав с покрытием

Z=1

Свёрла с пластинами D4120.05 inch

5×D_c

	Р	М	K	N	S	Н	0
D4120.05	••		••	•			

Инструмент	Обозначение	D _c дюйм	L _c дюйм	I ₄ дюйм	I ₅ дюйм	d ₁ дюйм	d ₄ дюйм	lbs	Кол-во пластин	Тип
Цилиндрический хвостовик с лыской	★ D4120.05-16.66F26-P42	0,656	3,280	4,280	2,281	1,000	1,375	1,03	1 1	
D _c d ₁ d ₄	★ D4120.05-17.04F26-P42	0,671	3,355	4,355	2,281	1,000	1,375	1,05	1 1	
t Lc - 15 -	★ D4120.05-17.45F26-P42	0,687	3,435	4,435	2,281	1,000	1,375	1,07	1 1	
	★ D4120.05-17.86F26-P42	0,703	3,515	4,515	2,281	1,000	1,375	1,05	1 1	P484 . P-2R
	★ D4120.05-18.24F26-P42	0,718	3,590	4,590	2,281	1,000	1,375	1,11	1 1	P484 . C-2R
	★ D4120.05-19.05F26-P42	0,750	3,750	4,750	2,281	1,000	1,375	1,18	1 1	
	★ D4120.05-19.43F26-P42	0,765	3,825	4,825	2,281	1,000	1,375	1,12	1 1	
	★ D4120.05-19.84F26-P42	0,781	3,905	4,905	2,281	1,000	1,375	1,14	1 1	
Цилиндрический хвостовик с лыской	★ D4120.05-20.62F26-P43	0,812	4,060	5,060	2,281	1,000	1,375	1,18	1 1	
D_c $d_1 d_4$	★ D4120.05-21.41F26-P43	0,843	4,215	5,215	2,281	1,000	1,375	1,24	1 1	
L _c 1 ₄ 1 ₅	★ D4120.05-22.23F31-P43	0,875	4,375	5,505	2,281	1,250	1,625	1,77	1 1	P484 . P-3R
	★ D4120.05-23.01F31-P43	0,906	4,530	5,660	2,281	1,250	1,625	1,77	1 1	P484 . C-3R
	★ D4120.05-23.39F31-P43	0,921	4,605	5,735	2,281	1,250	1,625	1,80	1 1	
	★ D4120.05-23.80F31-P43	0,937	4,685	5,815	2,281	1,250	1,625	1,88	1 1	
Цилиндрический хвостовик с лыской	★ D4120.05-24.59F31-P44	0,968	4,840	5,970	2,281	1,250	1,625	1,96	1 1	
D_c	★ D4120.05-24.99F31-P44	0,984	4,920	6,050	2,281	1,250	1,625	1,98	1 1	
L _c 1 ₄ 1 ₅	★ D4120.05-25.40F31-P44	1,000	5,000	6,130	2,362	1,250	1,625	2,01	1 1	
	★ D4120.05-26.57F31-P44	1,046	5,230	6,359	2,281	1,250	1,625	2,06	1 1	P484 . P-4R P484 . C-4R
	★ D4120.05-26.97F31-P44	1,062	5,310	6,440	2,281	1,250	1,625	2,10	1 1	
	★ D4120.05-28.17F31-P44	1,109	5,545	6,675	2,281	1,250	1,625	2,22	1 1	
	★ D4120.05-28.58F31-P44	1,125	5,625	6,755	2,281	1,250	1,625	2,27	1 1	

Сборочные детали входят в комплект поставки

Сборочные детали	D _c [дюйм]	0,656-0,781	0,812-0,937	0,906	0,968-1,125	1,171–1,375	1,421-1,625
	Винт пластины Момент затяжки	FS2111 (Torx 7IP) 0,9 HM	FS1454 (Torx 8IP) 1,2 Hм	FS1454 (Torx 8IP) 1,2 HM	FS1457 (Torx 9IP) 2,0 HM	FS2080 (Torx 15IP) 2,5 HM	FS1453 (Torx 15IP) 3,5 HM
c	Вставка			FS2012 (Torx 8IP)			

Комплектующие	D _c [дюйм]	0,656-0,781	0,812-0,937	0,906	0,968-1,125	1,171–1,625
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2004 1,5-5,0 Нм	FS2004 1,5-5,0 Нм
333	Рукоятка динамометрической отвёртки, цифровая Момент затяжки		FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм
	Вставка	FS2011 (Torx 7IP)	FS2012 (Torx 8IP)		FS2013 (Torx 9IP)	FS2014 (Torx 15IP)
	Отвёртка	FS2088 (Torx 7IP)	FS1483 (Torx 8IP)	FS1483 (Torx 8IP)	FS1484 (Torx 9IP)	FS1485 (Torx 15IP)

Пластины																		
					Р			М			K			N			S	
					НС			НС			НС			НС			НС	
	Обозначение	Размер	WKP25S	WKP35S	WSP45	WSP456	WSP45	WSP456	WXP40	WKP25S	WKP35S	WXP40	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40
	P4840PR-A57	2–4	49	33	33	33	ă	33			33					3	*	
	P4840PR-E57	2–4	•		33		ă	3			33					33		
	P4840PR-E67	2–4	•			33	ă	3			3					33	*	
	P4841PR-A57	2–4	49	33	\$	33	ũ	33			3					33	38	
	P4841PR-E57	2–4	•		33	33	ã	3								33		
	P4840CR-E67	2–4		•		#	3	23	3		8	*			(3)		*	33
	P4841CR-A57	2–4				23	3	33			*						*	
	P4841CR-E57	2–4				23	3	33	33			*					*	

НС = твёрдый сплав с покрытием

Свёрла с пластинами D4120.05 inch

M K

★ D4120.05-41.28F38-P46

Инструмент	Обозначение	D _c дюйм	L _c дюйм	I ₄ дюйм	I ₅ дюйм	d ₁ дюйм	d ₄ дюйм	lbs	Кол-во пластин	Тип
Цилиндрический хвостовик с лыской	★ D4120.05-29.74F31-P45	1,171	5,855	6,985	2,281	1,250	1,625	2,33	1 1	
Dc d1 d4	★ D4120.05-30.15F31-P45	1,187	5,935	7,065	2,281	1,250	1,625	2,37	1 1	
L _c	★ D4120.05-31.75F31-P45	1,250	6,250	7,380	2,281	1,250	1,625	2,58	1 1	P484 . P-5R
1 4 151	★ D4120.05-33.32F31-P45	1,312	6,560	7,690	2,281	1,250	1,625	2,80	1 1	P484 . C-5R
	★ D4120.05-34.11F31-P45	1,343	6,715	7,845	2,281	1,250	1,625	2,91	1 1	
	★ D4120.05-34.93F31-P45	1,375	6,875	8,005	2,281	1,250	1,625	3,03	1 1	
	★ D4120.05-36.09F31-P46	1,421	7,105	8,235	2,281	1,250	1,625	2,98	1 1	
D _C d ₁ d ₄	★ D4120.05-36.50F38-P46	1,437	7,185	8,565	2,688	1,500	1,940	3,89	1 1	
L _c l ₄ l ₅	★ D4120.05-38.10F38-P46	1,500	7,500	8,880	2,688	1,500	1,940	4,27	1 1	P484 . P-6R P484 . C-6R
1 4 1 3 1	★ D4120.05-39.67F38-P46	1,562	7,810	9,190	2,688	1,500	1,940	4,60	1 1	

1,625

8,125

9,505

2,688

1,500

1,940

D4120.05

Сборочные детали входят в комплект поставки

Сборочные детали	D _c [дюйм]	0,656-0,781	0,812-0,937	0,906	0,968-1,125	1,171-1,375	1,421-1,625
	Винт пластины Момент затяжки	FS2111 (Torx 7IP) 0,9 HM	FS1454 (Torx 8IP) 1,2 Hм	FS1454 (Torx 8IP) 1,2 HM	FS1457 (Torx 9IP) 2,0 HM	FS2080 (Torx 15IP) 2,5 HM	FS1453 (Torx 15IP) 3,5 HM
	Вставка			FS2012 (Torx 8IP)			

Комплектующие	D _c [дюйм]	0,656-0,781	0,812-0,937	0,906	0,968-1,125	1,171–1,625
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2002 0,4-1,2 Нм	FS2004 1,5-5,0 Нм	FS2004 1,5-5,0 Нм
333	Рукоятка динамометрической отвёртки, цифровая Момент затяжки		FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм	FS2248 1,0-6,0 Нм
	Вставка	FS2011 (Torx 7IP)	FS2012 (Torx 8IP)		FS2013 (Torx 9IP)	FS2014 (Torx 15IP)
	Отвёртка	FS2088 (Torx 7IP)	FS1483 (Torx 8IP)	FS1483 (Torx 8IP)	FS1484 (Torx 9IP)	FS1485 (Torx 15IP)

Пластины																		
					Р			М			K			N			S	
					нс			НС			НС	Ì		НС			НС	
	Обозначение	Размер	WKP25S	WKP35S	WSP45	WSP456	WSP45	WSP456	WXP40	WKP25S	WKP35S	WXP40	WSP45	WSP456	WXP40	WSP45	WSP456	WXP40
	P4840PR-A57	5-6	49	3	23	3	23	33		(3)	33					23		
	P4840PR-E57	5-6			33			33								33		
	P4840PR-E67	5-6	•		33	23	23	33			33		(3)			33		
	P4841PR-A57	5–6	49	33	33	(3)	33	*			33					33		
	P4841PR-E57	5–6	•	(2)	33	(3)	33	*			33					33		
	P4840CR-E67	5–6		•	;	33 3	t	33	33		®	33				1		33
808	P4841CR-A57	5–6			;	#	ì	*	*		33	3						*
	P4841CR-E57	5–6			;	33 3	1	*				33				1		33

НС = твёрдый сплав с покрытием

Режимы резания для D4120

	= режимы резания для обработки с СОХ	(E = эмульсия, 0 = масло)								Гес	метрия	пласті	ины		
	= возможна обработка без СОЖ (М = ма	аспаный туман I — без СОЖ)													
	Необходимо назначить режимы резан	ия с помощью Walter GPS									Под	ача			
	* //										f [MN				
	* Классификацию по группам обрабатываемос	ти см. в сравнительнои таблице групп ма	териалов												-
												E7			
											А	57			
				里		* <u>z</u>				l	l	I	I	ı	
<u>m</u>				¥	Æ	OW6			Разм1	Разм2	Разм3	Разм4	Разм5	Разм7 Разм8	
ало				포	ΣĒ	lBa6							Pd3M.=0	P d 3 M . = 0	
ери				9 ер	HOC	бать					ח ו	мм]			
мат				2	odr	обрабатываемости*					DC I	IVIIVI J			
Па				Aoc	ел г 1 ²	la o			135	16,5	20,5-	24,5-	29,5-	42,5-	
Группа материалов	Основные	группы материалов		Твёрдость по Бринеллю	Предел прочности R _m H/мм²	Группа	=₹	- ₹	13,5- 16,4	-20,4	24,4	29,4	42,4	59,4	
_							- "								
		C ≤ 0,25 % C > 0,25 ≤ 0,55 %	отожжённая	125	430	P1 P2	••		0,05	0,06	0,06	0,09	0,12	0,13	
		C > 0,25 ≤ 0,55 % C > 0,25 ≤ 0,55 %	отожжённая улучшенная	190 210	640 710	P3	••		0,07	0,09	0,10	0,13	0,18	0,19	
	Нелегированная сталь	C > 0,55 %	отожжённая	190	640	P4	••		0,07	0,09	0,10	0,13	0,18	0,19,	
		C > 0,55 %	улучшенная	300	1010	P5	••		0,07	0,09	0,10	0,13	0,18	0,19	
		автоматная сталь (сегментная стружка)	1 ' '	220	750	P6	••	•	0,07	0,09	0,10	0,13	0,18	0,19,	
		отожжённая	1	175	590	P7	••		0,08	0,10	0,12	0,15	0,20	0,21	
Р		улучшенная		285	960	P8	••		0,07	0,09	0,10	0,13	0,15	0,16	
•	Низколегированная сталь	улучшенная		380	1280	P9	••		0,07	0,09	0,10	0,13	0,15	0,16	
		улучшенная		430	1480	P10	••		0,05	0,06	0,06	0,09	0,12	0,13	
	Высоколегированная сталь	отожжённая		200	680	P11	••		0,08	0,10	0,12	0,15	0,18	0,19	
	и высоколегированная инструментальная	закалённая и отпущенная		300	1010	P12	••		0,07	0,09	0,10	0,13	0,15	0,16	
	сталь	закалённая и отпущенная		380	1280	P13	••		0,06	0,08	0,09	0,12	0,14	0,15	
	Нержавеющая сталь	ферритная / мартенситная, отожжённая		200	680	P14	••		0,07	0,09	0,10	0,13	0,15	0,16	
	пержавеющая сталь	мартенситная, улучшенная		330	1110	P15	••		0,06	0,08	0,09	0,12	0,14	0,15	
		аустенитная, закалённая		200	680	M1	••		0,06	0,07	0,08	0,10	0,13	0,14	
М	Нержавеющая сталь	аустенитная, дисперсионно-твердеюща	a (PH)	300	1010	M2	••		0,06	0,07	0,08	0,10	0,13	0,14	
		аустенитно-ферритная, дуплексная		230	780	M3	••		0,06	0,07	0,08	0,10	0,13	0,14	
	Ковкий литейный чугун	ферритный		200	400	K1	••	•	0,09	0,12	0,14	0,17	0,22	0,23	
	· · ·	перлитный		260	700	K2	••	•	0,07	0,09	0,11	0,14	0,19	0,20	
V	Серый чугун (СЧ)	с низким пределом прочности		180 245	200 350	K3	••	•	0,10	0,13	0,15	0,18	0,23	0,24	
K		с высоким пределом прочности / аустен	итныи	155	400	K5	••	•	0,08	0,10	0,12	0,15	0,20	0,21	
	Высокопрочный чугун	ферритный перлитный		265	700	K6	••	•	0,10	0,10	0,13	0,18	0,23	0,24	
	Вермикулярный чугун (ЧВГ)	Периппы		230	400	K7	••	•	0,09	0,12	0,12	0,17	0,22	0,23	
		не упрочняемые термической обработко	 рй	30	_	N1							,		
	Алюминиевые ковкие сплавы	упрочняемые термической обработкой,		100	340	N2	••								
		≤ 12 % Ѕі, не упрочняемые термической	обработкой	75	260	N3	••								
	Алюминиевые литейные сплавы	≤ 12 % Ѕі, упрочняемые, упрочнённые		90	310	N4	••								
N		> 12 % Si, не упрочняемые термической	обработкой	130	450	N5	••	•							
.,	Магниевые сплавы			70	250	N6	••								
		нелегированная, электролитическая ме	дь	100	340	N7									
	Медь и медные сплавы	латунь, бронза, красная латунь		90	310	N8	••								
	(бронза/латунь)	медные сплавы, дающие сегментную ст	ружку	110	380	N9	••	•	0.00	0.07	0.00	0.10	0.12	0.1/	
		высокопрочные сплавы Cu-Al-Fe	OTOMOV.	300	1010	N10	••	•	0,06	0,07	0,08	0,10	0,13	0,14	
		на основе Fe	упрочнённые	200	680 940	S1 S2	••								
	Жаропрочные сплавы		отожжённые	250	840	S3	••								
	Maporipo indic crinabbi	на основе Ni или Co	упрочнённые	350	1180	54	••								
_		110 0011000 111 77771 00	литейные	320	1080	S5	••								
S		чистый титан		200	680	S6									
	Титановые сплавы	α- и β-сплавы, упрочнённые		375	1260	S7	••								
		β-сплавы		410	1400	S8	••								
	Вольфрамовые сплавы			300	1010	S9	••		0,05	0,06	0,06	0,09	0,11	0,12	
	Молибденовые сплавы			300	1010	S10	••		0,05	0,06	0,06	0,09	0,11	0,12	
		закалённая и отпущенная		50 HRC	_	H1	••		0,05	0,06	0,06	0,09	0,10	0,10	
н	Закалённая сталь	закалённая и отпущенная		55 HRC	-	H2	••		0,05	0,06	0,06	0,09	0,10	0,10	
••	2 "	закалённая и отпущенная		60 HRC		H3			0.0=	0.00	0.00	0.00	0.10	0.10	
	Закалённый чугун	закалённый и отпущенный		55 HRC	-	H4	••		0,05	0,06	0,06	0,09	0,10	0,10	
	Термопласты	без абразивных включений				01	••	•							
	Реактопласты	без абразивных включений				02	••	•							
0	Пластмассы, армированные стекловолокном Пластмассы, армированные углеволокном	GFRP CFRP				03									
	Пластмассы, армированные углеволокном Пластмассы, армированные арамидным волокном	AFRP				05									
	Графит (технический)	,		80 по Шору		06	••	•	0,09	0,12	0,14	0,17	0,22	0,23	
	1 1 1					, ,,			-,00	-,	-,	-,-,	-,	,	

Рекомендуемая область применения (указанные режимы резания являются начальными значениями для данной области)
 Возможная область применения. Ограничена глубиной сверления 2 × D_c. Рекомендуется охлаждение масляным туманом или сжатым воздухом.

При использовании свёрл $> 3 \times D_c$ режимы резания необходимо снизить следующим образом: $> 3 \times D_c$: скорость резания v_c -20 %, подача f -30 % при засверливании, подача f -50 % при засверливании в наклонные поверхности. $> 4 \times D_c$: скорость резания v_c -30 %, подача f -40 % при засверливании.

																В ОСООЫ	х случал	іх пеоохі	эдима к	phherint	JUBKA CKI	эрости р	езапия
	Геометрия пластины														Пе	рифери		пав 1астина	[P484.I	P]			
						цача и/об]										Началь	ная ско v _c [м		езания				
		E	57					E	67								Н	C					
Разм1	Разм2	Разм3	Разм4	Разм5 Разм6		Разм1	Разм2	Разм3	Разм4	Разм5 Разм6	Разм7 Разм8		WKP25 5 f [мм/об			WKP35 5 f [мм/об			WSP45 [мм/об]		WSP45 С [мм/об	
		D _c	[мм]					D _c I	мм]														
13,5- 16,4	16,5- 20,4	20,5- 24,4	24,5- 29,4	29,5- 42,4	42,5– 59,4	13,5- 16,4	16,5- 20,4	20,5- 24,4	24,5- 29,4	29,5- 42,4	42,5- 59,4	0,06	0,10	0,16	0,06	0,10	0,16	0,06	0,10	0,16	0,06	0,10	0,16
0,05	0,06	0,06	0,09	0,12	0,13	0,05	0,06 0,07	0,06	0,09	0,12	0,13	350 260	320	220	300	270 200	180	250	220 160	150	250 170	220 160	150
0,06	0,07	0,08	0,11	0,17	0,18	0,06	0,07	0,08	0,11	0,17	0,18	240	240	200	220	180	150	170 150	140	150 130	150	140	130
0,06	0,07	0,08	0,11	0,17	0,18							220	200	180	180	150	140	140	130	120	140	130	120
0,06	0,07	0,08	0,11	0,17	0,18							190 220	170 200	150 180	150 180	130 150	120 140	130 140	120 130	110 120	130 140	120 130	110 120
0,06	0,07	0,00	0,11	0,17	0,10	0,06	0,08	0,10	0,14	0,20	0,21	260	240	220	220	200	180	170	160	160	170	160	160
0,06	0,07	0,08	0,11	0,14	0,15							230	210	190	190	170	140	140	130	120	140	130	120
0,06	0,07	0,08	0,11	0,14	0,15							210 190	190 170	170 160	180 170	160 140	130 130	140 140	120 120	110 110	140 140	120 120	110 110
0,05	0,00	0,00	0,09	0,11	0,12	0,06	0,08	0,10	0,12	0,16	0,17	220	200	180	200	170	150	140	130	120	140	130	120
0,06	0,07	0,08	0,11	0,14	0,15							200	170	150	180	140	130	130	120	110	130	120	110
0,05	0,06	0,07	0,10	0,13	0,14	0,06	0,07	0,08	0,11	0,14	0,15	190	160	140	170 190	130 170	120 150	120 140	110 130	100 120	120 140	110 130	100 120
0,00	0,07	0,08	0,11	0,14	0,13	0,05	0,07	0,08	0,11	0,14	0,15				150	130	120	120	110	100	120	110	100
0,06	0,07	0,08	0,10	0,13	0,14	0,06	0,07	0,09	0,12	0,14	0,15				220	200	180	180	170	150	180	170	150
0,06	0,07	0,08	0,10	0,13	0,14	0,06	0,07	0,09	0,12	0,14	0,15 0,15				150 120	130 100	110 80	130 100	110 80	100 70	130 100	110 80	100 70
0,00	0,07	0,00	0,10	0,13	0,14	0,00	0,07	0,09	0,12	0,14	0,13	210	190	170	190	180	160	170	140	120	170	140	120
0,05	0,07	0,08	0,11	0,18	0,19	0,05	0,07	0,09	5,2 :	-,	5,22	190	140	120	130	120	110	130	120	110	130	120	110
0,08	0,10	0,12	0,15	0,22	0,23	0,08	0,10	0,12	0,15	0,22	0,23	220	200	180	200	190	170	180	160	130	180	160	130
0,06	0,08	0,09	0,12	0,19	0,20	0,08	0,10	0,12	0,15	0,22	0,23	180 150	150 140	130 130	150 140	130 120	110 110	150 150	130 130	110 120	150 150	130 130	110 120
0,06	0,08	0,09	0,12	0,22	0,23	0,06	0,08	-,	5,22		5,25	140	130	120	120	110	100	120	110	110	120	110	110
0,07	0,09	0,11	0,14	0,21	0,22	0,07	0,09	0,11	0,14	0,21	0,22	180	150	130	150	130	110	150	130	110	150	130	110
0,07	0,09	0,10	0,12	0,17	0,18	0,07	0,09	0,11	0,12	0,17	0,18							450	450	450	450	450	450
0,08	0,10	0,12	0,15	0,17	0,18	0,08	0,10	0,12	0,15	0,17	0,18							300	300	300	300	300	300
0,08	0,10	0,12	0,15	0,17	0,18	0,08	0,10	0,12	0,15	0,17	0,18							250	250	250	250	250	250
0,08	0,10	0,12	0,15	0,17	0,18	0,08	0,10	0,12	0,15	0,17	0,18	_						200 300	200 300	200 300	200 300	200 300	200 300
5,00	5,10	O,IL	5,15	5,17	5,10	5,00	5,10	0,12	5,15		5,10							530	550	550	550	550	500
0,10	0,12	0,14	0,17	0,22	0,23	0,10	0,12	0,14	0,17	0,22	0,23							300	250	200	300	250	200
0,10	0,12	0,14	0,17	0,22	0,23	0,10	0,12	0,14	0,17	0,22	0,23				150	130	110	350 130	300 110	250 100	350 130	300 110	250 100
0,05	0,06	0,07	0,10	0,13	0,14	0,05	0,06	0,07	0,10	0,13	0,14	100	100		100	100		90	90		90	90	
0,05	0,06	0,06	0,09	0,11	0,12	0,05	0,06	0,06	0,09	0,11	0,12	80	80		80	80		70	70		70	70	
0,05	0,06	0,07	0,10	0,12	0,13	0,05	0,06	0,07	0,10	0,12	0,13	60 50	60 50		60 50	60 50		50 40	50 40		50 40	50 40	
0,05	0,06	0,06	0,09	0,11	0,12	0,05	0,06	0,06	0,09	0,11	0,12	50	50		50	50		40	40		40	40	
0.05	0.00	0.07	0.10	0.13	0.13	0.05	0.00	0.07	0.10	0.12	0.13					F0		F0.	/5			/-	
0,05	0,06	0,07	0,10	0,12	0,13	0,05	0,06	0,07	0,10	0,12	0,13				50 50	50 50		50 40	45 40		50 40	45 40	
0,05	0,06	0,06	0,09	0,11	0,12	0,05	0,06	0,06	0,09	0,11	0,12	70	60										
0,05	0,06	0,06	0,09	0,11	0,12	0,05	0,06	0,06	0,09	0,11	0,12	70	60	FO									
0,05	0,06	0,06	0,09	0,10	0,10							70 60	60 50	50 50									
0,05	5,50	5,50	5,05	3,10	5,10								55	50									
0,05	0,06	0,06	0,09	0,10	0,10	0.10	0.10	0.00	0.00	0.00	0.00	60	50	50	100	160	160	160	160	160	160	160	100
0,16	0,18	0,20	0,25	0,30	0,30	0,16	0,18	0,20	0,25	0,30	0,30	300	300	300	400 300	400 300	400 300	400 300	400 300	400 300	400 300	400 300	400 300
5,12	5,14	0,10	5,20	5,25	0,20	0,11	5,14	0,10	5,20	J,EJ	0,20	- 550	530	- 550	550	330	- 550	550	550	550	550	550	500
0.07	0.00	η 11	0.14	η 21	0,22							300	250	200	250	200	150	250	200	150	250	200	150
0,07	0,09	0,11	0,14	0,21	U,22							300	250	200	250	200	150	250	200	150	250	200	150

НС = твёрдый сплав с покрытием

Режимы резания для D3120

										Геоме	трия пла	стины		
	= возможна обработка без СОЖ (М = ма	асляный туман, L = без COЖ)												
	Необходимо назначить режимы резан	ия с помощью Walter GPS									Подача			
	* Классификацию по группам обрабатываемос:	ти см. в сравнительной таблице групп мат	ериалов							1	f [мм/об]		
											A 57			
				9		*								
_				온	_	обрабатываемости*			Danu 1	Danu 2	Danu 2	Danie 6	Danie 5	
лов				He.	Z Z	aaek			Pa3M1	Pa3M2	Разм3	Pa3M4	Pa3M3	
риа				Бри	DOCT	aTbl								
ате				은	700	pag					D _c [мм]			
ВГ				OCT.	5.	а об								
Группа материалов	Основные	группы материалов		Твёрдость по Бринеллю	Предел прочности R _m H/мм²	Группа	=3	=X	16-20	21-25	26-30	31-36	37-42	
	Основные						П	~						
		C ≤ 0,25 %	отожжённая	125	430	P1	••		0,05	0,06	0,06	0,09	0,12	
		C > 0,25 ≤ 0,55 % C > 0,25 ≤ 0,55 %	птожженная изгления	190	640 710	P2 P3	••		0,07 0,07	0,09	0,10	0,13	0,18	
	Нелегированная сталь	C > 0,25 ≤ 0,55 % C > 0,55 %	улучшенная отожжённая	210 190	710 640	P3	••		0,07	0,09	0,10	0,13	0,18	
		C > 0,55 %	улучшенная	300	1010	P4 P5	••		0,07	0,09	0,10	0,13	0,18	
		автоматная сталь (сегментная стружка)		220	750	P6	••	•	0,07	0,09	0,10	0,13	0,18	
		отожжённая		175	590	P7	••		0,08	0,10	0,12	0,15	0,20	
Р	Huavanarunanauv	улучшенная		285	960	P8	••		0,07	0,09	0,10	0,13	0,15	
	Низколегированная сталь	улучшенная		380	1280	P9	••		0,07	0,09	0,10	0,13	0,15	
		улучшенная		430	1480	P10	••		0,05	0,06	0,06	0,09	0,12	
	Высоколегированная сталь	отожжённая		200	680	P11	••		0,08	0,10	0,12	0,15	0,18	
	и высоколегированная инструментальная сталь	закалённая и отпущенная		300	1010	P12	••		0,07	0,09	0,10	0,13	0,15	
	CIDIB	закалённая и отпущенная		380 200	1280	P13	••		0,06	0,08	0,09	0,12	0,14	
	Нержавеющая сталь	ферритная / мартенситная, отожжённая мартенситная, улучшенная		330	680 1110	P14 P15	••		0,07 0,06	0,09	0,10	0,13	0,15	
_		аустенитная, закалённая		200	680	M1	••		0,06	0,00	0,03	0,12	0,14	
М	Нержавеющая сталь	аустенитная, дисперсионно-твердеющая	ı (PH)	300	1010	M2	••		0,06	0,07	0,08	0,10	0,13	
		аустенитно-ферритная, дуплексная		230	780	M3	••		0,06	0,07	0,08	0,10	0,13	
	Ковкий литейный чугун	ферритный		200	400	K1	••	•	0,09	0,12	0,14	0,17	0,22	
	ковкий литеиный чугун	перлитный		260	700	K2	••	•	0,07	0,09	0,11	0,14	0,19	
	Серый чугун (СЧ)	с низким пределом прочности		180	200	K3	••	•	0,10	0,13	0,15	0,18	0,23	
K		с высоким пределом прочности / аустен	итный	245	350	K4	••	•	0,08	0,10	0,12	0,15	0,20	
	Высокопрочный чугун	ферритный перлитный		155 265	400 700	K5 K6	••	•	0,10 0,08	0,13	0,15 0,12	0,18	0,23	
	Вермикулярный чугун (ЧВГ)	Перлитный		230	400	K7	••	•	0,00	0,10	0,12	0,10	0,23	
		не упрочняемые термической обработко	й	30	-	N1			0,00	0,12	0,14	0,17	0,22	
	Алюминиевые ковкие сплавы	упрочняемые термической обработкой, у		100	340	N2	••							
		≤ 12 % Ѕі, не упрочняемые термической	обработкой	75	260	N3	••							
	Алюминиевые литейные сплавы	≤ 12 % Si, упрочняемые, упрочнённые		90	310	N4	••							
N		> 12 % Si, не упрочняемые термической	обработкой	130	450	N5	••	•						
	Магниевые сплавы			70 100	250 340	N6 N7	••							
	Man	нелегированная, электролитическая ме, латунь, бронза, красная латунь	<u>ць</u>	90	310	N8	••							
	Медь и медные сплавы (бронза/латунь)	медные сплавы, дающие сегментную стр	OVЖKV	110	380	N9	••	•						
		высокопрочные сплавы Cu-Al-Fe	-,,	300	1010	N10	••	•	0,06	0,07	0,08	0,10	0,13	
			отожжённые	200	680	S1	••							
		на основе Fe	упрочнённые	280	940	S2	••							
	Жаропрочные сплавы		отожжённые	250	840	S3	••							
		на основе Ni или Co	упрочнённые	350	1180	S4	••							
S			литейные	320	1080	S5	••							
	Turayanya anganya	чистый титан		200 375	680 1260	S6 S7	••							
	Титановые сплавы	α- и β-сплавы, упрочнённые β-сплавы		410	1400	58 S8	••							
	Вольфрамовые сплавы	p cinabi		300	1010	S9	••		0,05	0,06	0,06	0,09	0,11	
	Молибденовые сплавы			300	1010	S10	••		0,05	0,06	0,06	0,09	0,11	
		закалённая и отпущенная		50 HRC	-	H1	••		0,05	0,06	0,06	0,09	0,10	
н	Закалённая сталь	закалённая и отпущенная		55 HRC	-	H2	••		0,05	0,06	0,06	0,09	0,10	
11		закалённая и отпущенная		60 HRC		Н3								
	Закалённый чугун	закалённый и отпущенный		55 HRC	-	H4	••		0,05	0,06	0,06	0,09	0,10	
	Термопласты	без абразивных включений				01	••	•						
	Реактопласты Пластмассы, армированные стекловолокном	без абразивных включений GFRP				02	••	•						
0	Пластмассы, армированные стекловолокном Пластмассы, армированные углеволокном	CFRP				03								
	Пластмассы, армированные эрамидным волокном	AFRP				05								
	Графит (технический)			80 по Шору		06	••	•	0,09	0,12	0,14	0,17	0,22	

Рекомендуемая область применения (указанные режимы резания являются начальными значениями для данной области)
 Возможная область применения. Ограничена глубиной сверления 2 × D_c. Рекомендуется охлаждение масляным туманом или сжатым воздухом.

При использовании свёрл $> 3 \times D_c$ режимы резания необходимо снизить следующим образом: $> 3 \times D_c$: скорость резания $v_c - 20$ %, подача f - 30 % при засверливании, подача f - 50 % при засверливании в наклонные поверхности. $> 4 \times D_c$: скорость резания $v_c - 30$ %, подача f - 40 % при засверливании.

В1

В таблице указаны рекомендуемые значения. В особых случаях необходима корректировка скорости резания.

																				-							
		Геометрия пластины																Спла	В								
				Под f [мы	цача и/об]											Нач	альная V	я скорс _{'с} [м/м		зания							
		E 57					E 67										НС									HW	
Разм1	Разм2	Разм3	Разм4	Разм5	Разм1	Разм2	Разм3	Разм4	Разм5		WKP25 [мм/об		ı	VKP35 5 [мм/об			WSP45 5 [мм/об			//SP45 [мм/об			WXP40 [мм/об		ı	WK40 [мм/оі	5]
		D _c [мм]					D _c [мм]																				
16-20	21–25	26-30	31–36	37-42	16-20	21–25	26-30	31–36	37–42	0,06	0,10	0,16	0,06	0,10	0,16	0,06	0,10	0,16	0,06	0,10	0,16	0,06	0,10	0,16	0,06	0,10	0,16
0,05	0,06	0,06	0,09	0,12	0,05	0,06	0,06	0,09	0,12	350	320		300	270		250	220		250	220		200	180	160			
0,06	0,07	0,08	0,11	0,17	0,06	0,07	0,08	0,11	0,17	260 240	240	220	220 200	200 180	180 150	170 150	160 140	150 130	170 150	160 140	150 130	150 150	140 140	130 120			
0,06	0,07	0,08	0,11	0,17						220	200	180	180	150	140	140	130	120	140	130	120	150	140	130			
0,06	0,07	0,08	0,11	0,17						190	170	150	150	130	120	130	120	110	130	120	110	120	110	100			
0,06	0,07	0,08	0,11	0,17	0,06	0,08	0,10	0,14	0,20	220 260	200	180 220	180 220	150 200	140	140 170	130 160	120 160	140 170	130 160	120 160	120 150	110	130			
0,06	0,07	0,08	0,11	0,14	,,,,,,	,,,,,,	,_0	,	,_0	230	210	190	190	170	140	140	130	120	140	130	120	140	120	110			
0,06	0,07	0,08	0,11	0,14						210 190	190	170	180	160	130	140	120	110	140	120	110	140	120	90			
0,05	0,06	0,06	0,09	0,11	0,06	0,08	0,10	0,12	0,16	220	170 200	160 180	170 200	140 170	130 150	140	120 130	110 120	140 140	120 130	110 120	120 130	110 120	80 110			
0,06	0,07	0,08	0,11	0,14						200	170	150	180	140	130	130	120	110	130	120	110	120	110	100			
0,05	0,06	0,07	0,10	0,13	0,06	0,07	0,08	0,11	0,14	190	160	140	170 190	130 170	120 150	120 140	110 130	100 120	120 140	110	100 120	110 130	100 120	80 110			
0,06	0,07	0,08	0,11	0,14	0,06	0,07	0,08	0,11	0,14				150	130	120	120	110	100	120	110	100	110	100	90			
0,06	0,07	0,08	0,10	0,13	0,06	0,07	0,09	0,12	0,14				220	200	180	180	170	150	180	170	150	160	150	120			
0,06	0,07	0,08	0,10	0,13	0,06	0,07	0,09	0,12	0,14				150 120	130	110 80	130 100	110 80	100 70	130 100	110 80	100 70	110 80	100 70	75 60			
0,00	0,07	0,11	0,14	0,13	0,00	0,09	0,11	0,12	0,14	210	190	170	190	180	160	170	140	120	170	140	120	160	140	140			
0,05	0,07	0,08	0,11	0,18	0,05	0,07	0,09	0.15	0.22	190	140	120	130	120	110	130	120	110	130	120	110	130	120	120			
0,08	0,10	0,12	0,15	0,22	0,08	0,10	0,12	0,15	0,22	220 180	200 150	180 130	200 150	190 130	170 110	180 150	160 130	130 110	180 150	160 130	130 110	160 130	140 120	120 100			
0,08	0,10	0,12	0,15	0,22	0,08	0,10	0,12	0,15	0,22	150	140	130	140	120	110	150	130	120	150	130	120	130	120	110			
0,06	0,08	0,09	0,12	0,22	0,06	0,08	0,11	0,14	0,21	140 180	130 150	120 130	120 150	110	100	120 150	110 130	110 110	120 150	110	110 110	110 130	100 120	100			
0,07	0,03	0,11	0,14	0,21	0,07	0,09	0,11	0,14	0,21	100	130	130	130	130	110	130	130	110	100	130	110	130	120	100		500	500
0,07	0,09	0,10	0,12	0,17	0,07	0,09	0,11	0,12	0,17							450	450	450	450	450	450					$\overline{}$	400
0,08	0,10	0,12	0,15	0,17	0,08	0,10	0,12	0,15	0,17							300 250	300 250	300 250	300 250	300 250	300 250						400 300
0,08	0,10	0,12	0,15	0,17	0,08	0,10	0,12	0,15	0,17							200	200	200	200	200	200					$\overline{}$	200
0,08	0,10	0,12	0,15	0,17	0,08	0,10	0,12	0,15	0,17							300	300	300	300	300	300					300	200
0,10	0,12	0,14	0,17	0,22	0,10	0,12	0,14	0,17	0,22							300	250	200	300	250	200						260 260
0,10	0,12	0,14	0,17	0,22	0,10	0,12	0,14	0,17	0,22							350	300	250	350	300	250					400	
0,06	0,07	0,08	0,10	0,13	0,06	0,07	0,09	0,12	0,14	100	100		150	130	110	130 90	110 90	100	130 90	110 90	100	80	80	70	70	70	
0,05	0,06	0,07	0,10	0,13	0,05	0,06	0,07	0,10	0,13	80	80		80	80		70	70		70	70		60	60	50	50	50	
0,05	0,06	0,07	0,10	0,12	0,05	0,06	0,07	0,10	0,12	60	60		60	60		50	50		50	50		50	50	40	40	40	
0,05	0,06	0,06	0,09	0,11	0,05	0,06	0,06	0,09	0,11	50 50	50		50 50	50 50		40	40		40	40		40	40	35 35	30 30	30	
0,05	0,06	0,07	0,10	0,12	0,05	0,06	0,07	0,10	0,12				50 50	50 50		50 40	45 40		50 40	45 40							
0,05	0,06	0,06	0,09	0,11	0,05	0,06	0,06	0,09	0,11	70	60		50	30		40	40		40	40							
0,05	0,06	0,06	0,09	0,11	0,05	0,06	0,06	0,09	0,11	70	60																
0,05	0,06	0,06	0,09	0,10						70 60	60 50	50 50															
0,00	0,00	0,00	0,03	0,10						00	50	50															
0,05	0,06	0,06	0,09	0,10	0.11	0.11	0.00	0.05	0.00	60	50	50	100	160	100	100	160	160	100	100	163	160	160	160			
0,16	0,18	0,20	0,25	0,30	0,16	0,18	0,20	0,25	0,30	300	300	300	400 300	400 300	400 300	400 300	400 300	400 300	400 300	400 300	400 300	400 300	400 300	400 300			
J, 2L	-, -7	_,_0	5,20	5,25	3,26	5,27	-,10	_,_0	_,_5	300	550	330	300	_00	300	300	200	200	300	300	550		200	200			
0,07	0,09	0,11	0,14	0,21						300	250	200	250	200	150	250	200	150	250	200	150	250	200	150			
1,5,	2,00	-,-1	-,	,,,,,,						500	1 200		250	_00	200	200			_50	200		_55	_00	_55			

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Режимы резания для В321.

	- TE								Геом	етрия	
	= режимы резания для обработки с СОЖ	(Е = эмульсия, О = масло)								тины	
	= возможна обработка без СОЖ (М = мас	сляный туман, L = без COЖ)							По		1
	Необходимо назначить режимы резани	я с помощью Walter GPS								цача м/об]	
	* Классификацию по группам обрабатываемості	и см. в сравнительной таблице групп матері	иалов	1 男		Группа обрабатываемости*					-
08				Твёрдость по Бринеллю НВ	Æ	емо					
Группа материалов				рин	Предел прочности R _m Н/мм²	TbB6			LCMX	–B57	
атер				8	DHY0	aga.					
a M				CTB	흔	dg0 t			D _c	[мм]	
Ę	Ocupanii			ëpAc	еде мм²) Elli	=₹	₹	10,0-	12,1-	
	ОСНОВНЫ	е группы материалов		_ ₽	프크	은			12,0	18,0	
		C ≤ 0,25 %	отожжённая	125	430	P1	••		0,05	0,06	
		C > 0,25 ≤ 0,55 % C > 0,25 ≤ 0,55 %	отожжённая	190 210	640 710	P2 P3	••		0,06	0,08	
	Нелегированная сталь	C > 0,25 \(\) 0,55 \(\)	улучшенная отожжённая	190	640	P4	••				
		C > 0,55 %	улучшенная	300	1010	P5	••				
		автоматная сталь (сегментная стружка)	отожжённая	220	750	P6	••	•			
_		отожжённая		175	590	P7	••		0,06	0,07	
P	Низколегированная сталь	улучшенная		285	960	P8	••				
		улучшенная		380 430	1280 1480	P9 P10	••				
	Высоколегированная сталь	отожжённая		200	680	P11	••				-
	и высоколегированная инструментальная	закалённая и отпущенная		300	1010	P12	••				
	сталь	закалённая и отпущенная		380	1280	P13	••				
	Нержавеющая сталь	ферритная / мартенситная, отожжённая		200	680	P14	••				
		мартенситная, улучшенная		330 200	1110	P15	••		0.05	0.00	
М	Нержавеющая сталь	аустенитная, закалённая аустенитная, дисперсионно-твердеющая	(PH)	300	680 1010	M1 M2	••		0,05	0,06	
	Пержавеющая сталь	аустенитно-ферритная, дуплексная	(111)	230	780	M3	••		0,05	0,06	1
	Ковкий литейный чугун	ферритный		200	400	K1	••	•	0,09	0,10	
	Коркии литеипри чугуп	перлитный		260	700	K2	••	•	0,07	0,08	
1/	Серый чугун (СЧ)	с низким пределом прочности		180 245	200 350	K3 K4	••	•	0,09	0,10	
K		с высоким пределом прочности / аустени ферритный	11ныи	155	400	K5	••	•	0,07	0,00	1
	Высокопрочный чугун	перлитный		265	700	K6	••		0,06	0,03	
	Вермикулярный чугун (ЧВГ)			230	400	K7	••	•	0,09	0,10	
	Алюминиевые ковкие сплавы	не упрочняемые термической обработкой		30	-	N1					
		упрочняемые термической обработкой, уг	•	100	340	N2	••				
	Алюминиевые литейные сплавы	≤ 12 % Si, не упрочняемые термической о ≤ 12 % Si, упрочняемые, упрочнённые	ораооткои	75 90	260 310	N3 N4	••				-
	Pational Patient State Carried	> 12 % Si, не упрочняемые термической с	обработкой	130	450	N5	••	•			
N	Магниевые сплавы			70	250	N6	••				
		нелегированная, электролитическая мед	ь	100	340	N7					
	Медь и медные сплавы (бронза/латунь)	латунь, бронза, красная латунь		90	310 380	N8 N9	••	•			
	(oponsamaryna)	медные сплавы, дающие сегментную стру высокопрочные сплавы Cu-Al-Fe	ужку	300	1010	N10	••	•			
			отожжённые	200	680	S1	••		0,05	0,06	
		на основе Fe	упрочнённые	280	940	52	••				
	Жаропрочные сплавы	Ni 6	отожжённые	250	840	S3	••				
		на основе Ni или Со	упрочнённые литейные	350 320	1180 1080	S4 S5	••				
S		чистый титан	Литеиные	200	680	S6					-
	Титановые сплавы	α- и β-сплавы, упрочнённые		375	1260	S7	••		0,05	0,06	
		β-сплавы		410	1400	S8	••		0,05	0,06	
	Вольфрамовые сплавы			300	1010	S9	••				
	Молибденовые сплавы	ээкэлённая и отпунатная		300 50 HRC	1010	S10 H1	••				
	Закалённая сталь	закалённая и отпущенная закалённая и отпущенная		55 HRC	_	H1 H2	••				
Н		закалённая и отпущенная		60 HRC	-	H3					
	Закалённый чугун	закалённый и отпущенный		55 HRC	-	H4	••				
	Термопласты	без абразивных включений				01	••	•			
	Реактопласты	без абразивных включений GFRP				02	••	•			
0	Пластмассы, армированные стекловолокном Пластмассы, армированные углеволокном	CFRP			03						
	Пластмассы, армированные углеволокном					05					
	Графит (технический)			80 по Шору		06	••	•	0,07	0,09	

Рекомендуемая область применения (указанные режимы резания являются начальными значениями для данной области)
 Возможная область применения. Ограничена глубиной сверления 2 × D_c. Рекомендуется охлаждение масляным туманом или сжатым воздухом.

При использовании свёрл $> 3 \times D_c$ режимы резания необходимо снизить следующим образом: $> 3 \times D_c$: скорость резания $v_c - 20$ %, подача f - 30 % при засверливании, подача f - 50 % при засверливании в наклонные поверхности.

В таблице указаны рекомендуемые значения. В особых случаях необходима корректировка скорости резания.

	Геометрия	і пластины						Спл	авы				
	По <i>д</i> f [мм	цача и/об]					Н	ачальная ско v _c [м/	рость резан /мин]	ия			
LCMX .	. –D57	LCMX .	. –E57					Н	C				
D _c [мм]	D _c [мм]	WKF f[MN	P25S a/o6]	WKF f [MN	235S n/o6]	WSF f[MM			P45G u/o6]		P40 м/об]
10,0- 12,0	12,1- 18,0	10,0- 12,0	12,1- 18,0	0,06	0,1	0,06	0,1	0,06	0,1	0,06	0,1	0,06	0,1
0,06	0,07	0,07	0,10	290	260	260	240	220	200	220	200	200	180
0,06	0,08	0,08	0,12	260	240	220	200	160	150	160	150	150	140
0,06	0,08	0,08	0,12	260	240	220	200	160	150	160	150	150	140
0,06 0,05	0,08	0,08	0,12 0,10	260 200	240 180	220 150	200 130	160 130	150 120	160 130	150 120	150 120	140 110
0,05	0,06	0,07	0,10	200	180	150	130	130	120	130	120	120	110
0,07	0,08	0,08	0,12	260	240	220	200	180	170	180	170	150	140
0,07	0,08	0,08	0,10	220	200	190	170	150	130	150	130	140	120
0,07	0,08	0,08	0,10	220	200	190	170	150	130	150	130	140	120
0,05	0,06	0,06	0,08	200	180	150	130	130	120	130	120	120	110
0,06 0,05	0,08	0,07 0,06	0,10	220 180	200 170	180 150	170 140	140 130	130 120	140 130	130 120	130 120	120 110
0,05	0,07	0,06	0,08	170	160	140	130	120	110	120	110	110	100
0,06	0,08	0,07	0,10	170	100	180	170	140	130	140	130	130	120
0,06	0,07	0,07	0,09	170	160	140	130	120	110	120	110	110	100
0,06	0,07					220	200	180	160	180	160	160	150
0,06	0,07					150	130	130	110	130	110	110	100
0,06	0,07	0.10	0.17	2/0	220	120	100	100	80	100	80	80	70 140
0,10 0,08	0,12	0,10 0,08	0,14	240 180	220 170	220 180	200 150	170 140	150 130	170 140	150 130	160 130	120
0,10	0,10	0,10	0,14	240	220	220	200	170	150	170	150	160	140
0,08	0,10	0,08	0,12	180	170	180	150	140	130	140	130	130	120
0,08	0,10	0,10	0,12	170	150	150	140	140	130	140	130	130	120
0,07	0,08	0,08	0,10	140	130	140	130	120	110	120	110	110	100
0,10	0,12	0,10	0,14	180	170	180	150	140	130	140	130	130	120
0,08	0,10							450	450	450	450		
0,08	0,10							300	300	300	300		
0,08	0,10							250	250	250	250		
0,08	0,10							200	200	200	200		
0,08	0,10							300	300	300	300		
0,08	0,10	0,08	0,10										
0,08	0,10	0,08	0,10										
0,06	0,03	5,07	5,05										
0,05	0,06	0,05	0,06			100	100					80	80
0,04	0,05	0,04	0,05			80	80					60	60
0,04	0,05	0,04	0,05			60	60					50	50
0,04	0,05 0,05	0,04	0,05 0,05			50 50	50 50					40	40
0,04	0,05	0,04	0,05			50	30					40	40
0,05	0,06							50	40	50	40		
0,05	0,06					50	50	40	40	40	40		
0,05	0,06			70	60								
0,05	0,06			70	60								
0,04	0,05			70 60	60 50								
0,04	0,05			OU	50								
0,04	0,05			60	50								
0,12	0,14	0,12	0,14			400	400	400	400	400	400	400	400
0,10	0,12	0,10	0,12	300	300	300	300	300	300	300	300	300	300
0,06	0,08	0,06	0,08	300	250	250	200	250	200	250	200	250	200
0,00	0,00	0,00	0,00	200	230	230	200	230	200	230	200	230	200

НС = твёрдый сплав с покрытием

Область применения сплавов — Обработка отверстий

Сверление																				
			Γ	руппа	мате	риало	В				Обл	асть	прі	имен	нени	Я				
Обозначение сплава Walter	Стандартное обозначение	Сталь Ф	Нержавеющая х сталь	К нугун	Цветные металлы Z	Жаропрочные S сплавы	Материалы высо- кой твёрдости т	Прочее	0	1 05	10		20	25	30	4 5	0 45 	Метод нанесения покрытия	Структура покрытия	Пример гластины
WKP25S	HC – P 25	••																CVD	TiCN + Al ₂ O ₃	-
WKF 233	HC – K 25			••														CVD	(+TiCN)	
WKP35S	HC – P 35	••																CVD	TiCN + Al ₂ O ₃	200
	HC – K 35			••															(+TiCN)	
	HC – P 45	••															$\widehat{}$		TiAIN + Al ₂ O ₃	
WSP45S	HC – M 45		••														$\widehat{}$	PVD	(+AI)	
	HC – S 45					••											$\widehat{}$			
	HC – P 45	••															$\widehat{}$			
WSP45	HC – M 45		••															PVD	TiAIN + Al ₂ O ₃	
	HC – S 45					••					+								(+ZrN)	
	HC – N 30				•						+		-							
	HC – P 45	••																		
WSP45G	HC – M 45		••														\mp	PVD	TiAIN + Al ₂ O ₃ (+ZrN)	
	HC – S 45					••													(+ZIIV)	3
	HC – N 30				•						+		+							
	HC - P 40	••															$\overline{}$			
WXP40	HC – M 30		••															PVD	TiCN	The same of the sa
	HC - K 40			••							+		-							
	HC - S 30					•					+	+	\vdash							
	HC - P 30	••									+									
WVD20	HC – M 30		•								+							DVD	Tialn / Tisin	
WXP30	HC – K 30			••	•													PVD	HAIN / HSIN	
	HC - N 30				•	•					+									
	HC - S 30 HC - P 45	••																		
WPP45C	HC – K 45			•													$\stackrel{+}{\rightarrow}$	PVD	Tialn / Tial	
WKK/EC	HC – P 45	•																PVD	TiAIN /	4
WKK45C	HC – K 45			••														ΓVU	Tisialcrn / Tisin	
	HC – P 35	••																		0
WMP35	HC – M 35		••															PVD	TiAIN	
	HC – S 35					••														
WNN25	HC – N 25				••									<u> </u>				PVD	ta-C (DLC)	
	HC - 0 25							•										. , 5		1

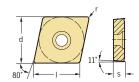
HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

^{• •} Основная область применения

Возможная область применения

B2

Пластины ромбические с задними углами 80° CCGT



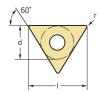
Пластины	ı																			
						P IC				M H				H	c	N HC		S		
	Обозначение	I MM	r MM		WEP10C WPP10S	WPP20S	WPP30S	WMP20S	WSM01	WSM10S WSM20S	WSM21	WSM30S	WSM10	WKK10S	WKK20S	WNN10	WSM01	WSM10S	WSM20S	WSM30S
1011	CCGT060201M-FP2	6,45	0,07	•	9															
	CCGT060202M-FP2	6,45	0,17	•	9															
	CCGT060204M-FP2	6,45	0,37	•	9															
	CCGT09T301M-FP2	9,67	0,07	•	9															
	CCGT09T302M-FP2	9,67	0,17	•	9															
	CCGT09T304M-FP2	9,67	0,37	•	9															
	CCGT09T308M-FP2	9,67	0,77	•	9															

Размеры пластин см. в разделе «Система обозначений по ISO 1832»

НС = твёрдый сплав с покрытием

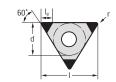
Пластины ромбические с задними углами 80° CPGT

Пластины																				
						P IC					M HC				H		N HC		S	
	Обозначение	I MM	r MM	WEP10C	WPP10S	WPP20S	WPP30S	WMP20S	WSM01	WSM10S	S	WSM21	WSM30S	WSM10	WKK10S	WKK20S	WNN10	WSM01	S	WSM30S
1011	CPGT050202M-FP2	5,64	0,17	•																
	CPGT050204M-FP2	5,64	0,37	•																


Размеры пластин см. в разделе «Система обозначений по ISO 1832»

НС = твёрдый сплав с покрытием

Пластины трёхгранные с задними углами 60° ТСGT



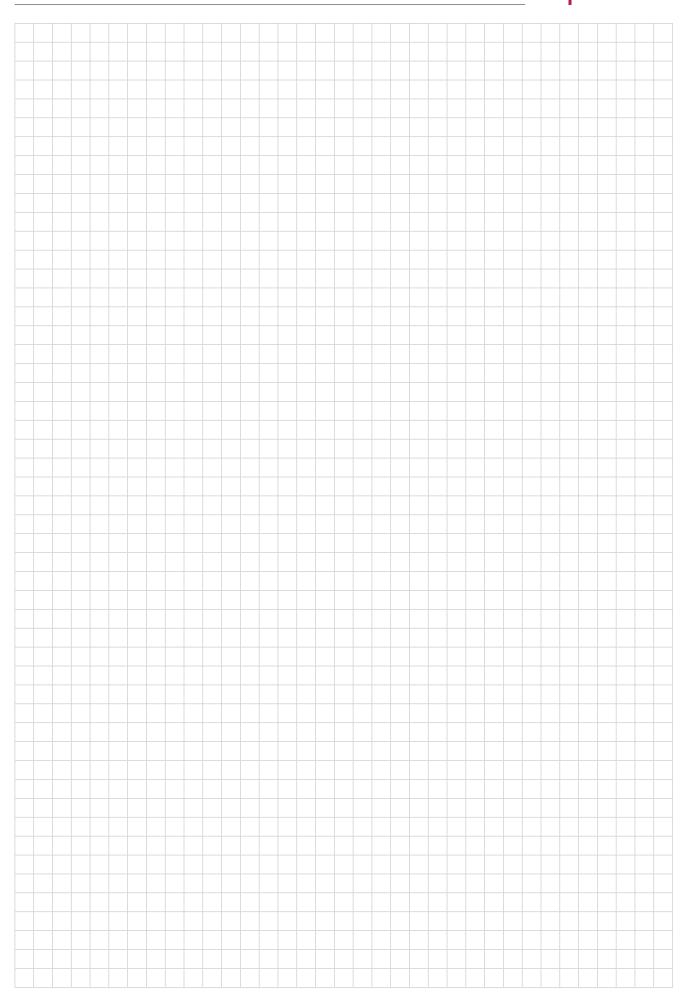
Пластинь	I																				
					F	o IC					M HC				K		N HC		S		
	Обозначение	I MM	r MM	WEP10C	WPP10S	WPP20S	WPP30S	WMP20S	WSM01	WSM10S	WSM20S	WSM21	WSM30S	WSM10	WKK10S	WKK20S	WNN10	WSM01	WSM10S	WSM20S	WSM30S
	TCGT06T104M-FP2	6,87	0,37	•																	
	TCGT110202M-FP2	11,00	0,17	•																	
	TCGT110204M-FP2	11,00	0,37	©																	

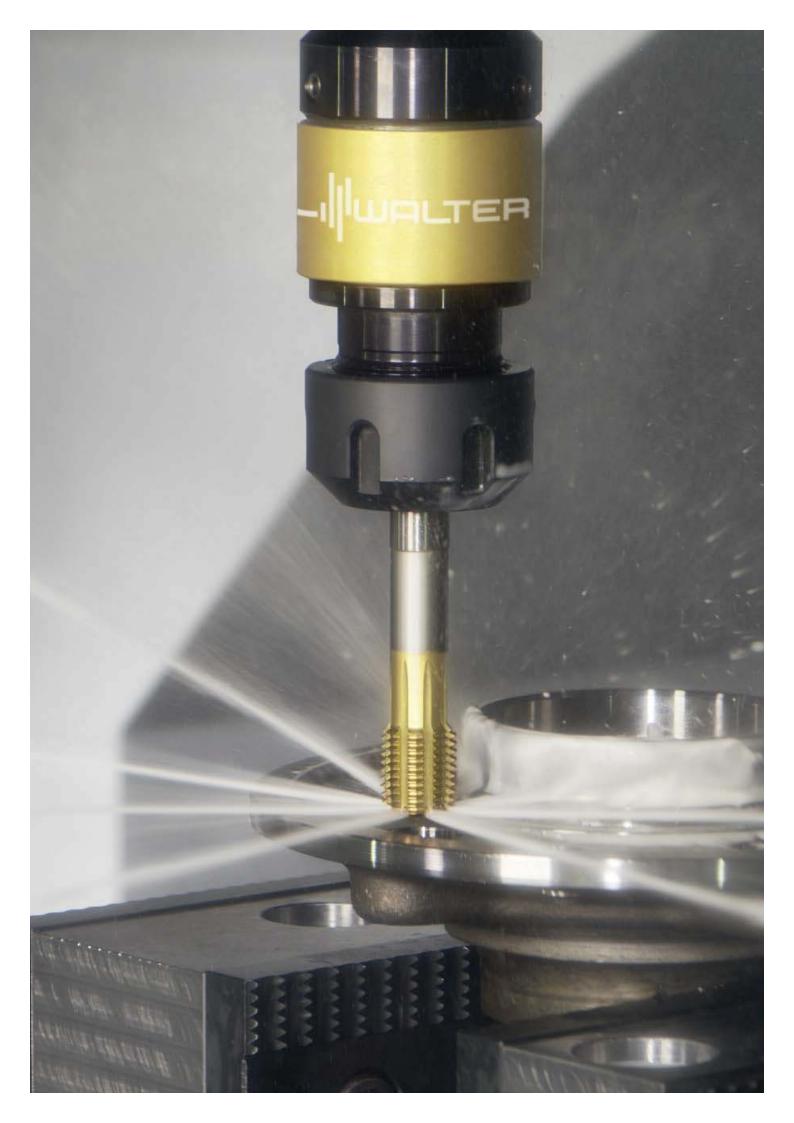
Размеры пластин см. в разделе «Система обозначений по ISO 1832»

НС = твёрдый сплав с покрытием

Пластины с CBN трёхгранные с задними углами 60° TCGW

Пластинь	l														
					K		N	s		Н		0			
				CN	вн	нс	DP	вн		BL		DP			
	Обозначение	l _e MM	r MM	WCK10	WBK20	WBK30	WDN10	WBS10	WBH10C	WBH10	WBH20	WDN10			
	TCGW110202TS-3	2,8	0,2										٦	\sqcap	_
	TCGW110204TS-3	3,1	0,4												_
													П	П	_
	TCGW110208TM-3	2,8	0,8						•	®	8				
	TCGW110204TM-3	3,1	0,4						•	®					


 $CN = керамика Si_3N_4$


ВН = сплав с высоким содержанием СВN

HC = твёрдый сплав с покрытием DP = поликристаллический алмаз BL = сплав с низким содержанием CBN

В — Обработка резьбы

Нарезание резьбы — ВЗ		
Быстрорежущие метчики HSS-E	Обзор программы	124
	UNF	125
Раскатывание резьбы — В4		
Раскатники быстрорежущие HSS-E-PM	Обзор программы	127
	Система обозначений	128
	М — метрическая резьба	129
	MF — метрическая резьба с мелким шагом	135
Резьбофрезерование — В5		
Резьбофрезы	Обзор программы	136
	Система обозначений	137
	Резьбофрезы со сменными пластинами	138
Техническая информация — Е	33-B5	
	Режимы резания	154
	Корректирующие значения радиуса	156
	Применение инструмента	157

В4

В5

Обзор программы быстрорежущих метчиков HSS-E UNF

Вид обработки		
Глубина резьбы	3,5 x D _N	3 x D _N
Обозначение	TC216 Perform	TC115 Perform
Диапазон размеров	UNF 6-40- UNF 1/2-20	UNF 6-40- UNF 1/2-20
Допуск	2B	2B
Подвод СОЖ	Наружный	Наружный
Форма заборного конуса	В	С
Покрытие / сплав	WY80AA	WY80AA
Исполнение	М	М
Стр.	125	126

B=3,5-5

32HRC

Метчики машинные быстрорежущие HSS-E TC216 Perform $\begin{tabular}{l} mm \end{tabular}$

3×D_N

– Для обработки материалов, дающих сливную стружку

UNF ASME B1.1

2B

	Р	М	K	N	S	Н	0	
WY80AA	••	••	••	••				Ī

DIN 371	Обозначение	D _N -P	D _N	l ₁ h9 мм	L _c	I ₃ мм	d ₁ мм	ММ	lg MM	N	WY80AA
P	TC216-UNF6-C0-	UNF 6-40	3,505	56	11	20	4	3	6	3	23
_	TC216-UNF10-C0-	UNF 10-32	4,826	70	13	25	6	4,9	8	3	23
+	TC216-UNF1/4-C0-	UNF 1/4-28	6,35	80	15	30	7	5,5	8	3	23
D_N	TC216-UNF5/16-C0-	UNF 5/16-24	7,938	90	18	35	8	6,2	9	3	23
+ L _c + l _g +	TC216-UNF3/8-C0-	UNF 3/8-24	9,525	100	20	39	10	8	11	3	23
13											

Пример заказа инструмента из сплава WY80AA: TC216-UNF6-C0-WY80AA

DIN 376	Обозначение	D _N -P	D _N	I ₁ h9 мм	L _c	l ₃	d ₁	ММ	lg MM	N	WY80AA
- P -	TC216-UNF7/16-L0-	UNF 7/16-20	11,113	100	20	76	8	6,2	9	3	#
<u></u>	TC216-UNF1/2-L0-	UNF 1/2-20	12,7	100	21	73	9	7	10	4	23
+											
D _N											
- L _c - - _{lg} -											<u> </u>
- I3 I											_

Пример заказа инструмента из сплава WY80AA: TC216-UNF7/16-L0-WY80AA

32HRC

Метчики машинные быстрорежущие HSS-E TC115 Perform mm

– Для обработки материалов, дающих сливную стружку

UNF 2B 2B

	Р	М	K	N	S	Н	0
WY80AA	••	••	••	•			

3×D_N

DIN 371	Обозначение	D _N -P	D _N	l ₁	L _c	I ₃	d ₁ h9 мм	MM	l ₉ мм	N	WY80AA
P	TC115-UNF6-C0-	UNF 6-40	3,505	56	6,5	20	4	3	6	3	33
_	TC115-UNF10-C0-	UNF 10-32	4,826	70	8	25	6	4,9	8	3	23
<u> </u>	▼ TC115-UNF1/4-C0-	UNF 1/4-28	6,35	80	10	30	7	5,5	8	3	23
DN	TC115-UNF5/16-C0-	UNF 5/16-24	7,938	90	12	35	8	6,2	9	3	23
+L _c +	TC115-UNF3/8-C0-	UNF 3/8-24	9,525	100	15	39	10	8	11	3	23
13-1											

Пример заказа инструмента из сплава WY80AA: TC115-UNF6-C0-WY80AA

DIN 376	Обозначение	D _N -P	D _N	l ₁	L _c	I ₃	d ₁ h9 мм	 MM	lg MM	N	WY80AA
P	TC115-UNF7/16-L0-	UNF 7/16-20	-	100 100	15 13	76 73	8	6,2	9	3	23
D _N d ₁	TC115-UNF1/2-L0-	UNF 1/2-20	12,7	100	13	/3	9	/	10	4	28

Пример заказа инструмента из сплава WY80AA: TC115-UNF7/16-L0-WY80AA

Обзор программы быстрорежущих раскатников HSS-E-PM

М — метрическая резьба

Вид обработки				
Глубина резьбы	3 x D _N	3,5 x D _N	3,5 x D _N	3,5 x D _N
Обозначение	TC430 Supreme	TC420 Supreme	TC430 Supreme	TC430 Supreme
Диапазон размеров	M 3-M 10	M 5-M 24	M 5-M 16	M 5-M 16
Допуск	6HX	6HX / 6GX	6HX	6HX
Подвод СОЖ	Наружный	Осевой / радиальный	Радиальный	Осевой
Форма заборного конуса	С	E/C	С	С
Покрытие / сплав	WW60EL	WW60AD / WW60BA	WW60AD / WW60EL	WW60AD / WW60EL
Сплав	HSS-E-PM	HSS-E-PM	HSS-E-PM	HSS-E-PM
Стр.	132	129	134	133

MF — метрическая резьба с мелким шагом

Вид обработки			
Глубина резьбы	3,5 x D _N	3,5 x D _N	
Обозначение	TC430 Supreme	TC430 Supreme	
Диапазон размеров	MF 8x1- MF 16x1.5	MF 8x1- MF 16x1.5	
Допуск	6HX	6HX	
Подвод СОЖ	Радиальный	Осевой	
Форма заборного конуса	С	С	
Покрытие / сплав	WW60AD / WW60EL	WW60AD / WW60EL	
Сплав	HSS-E-PM	HSS-E-PM	
Стр.	135	135	

Система обозначений твердосплавных и быстрорежущих раскатников HSS-E(-PM)

Пример:

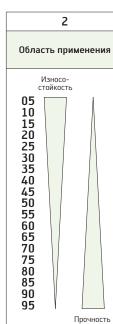
	1
	Назначение инструмента
Т	Threading (нарезание резьбы)

	3
	Тип инструмента
4	Раскатник

4									
Тип инструмента									
10 20	Универсальный, Advance Универсальный, Supreme		ISO P, Supreme ISO P, Supreme						

	5
	-й раздели- ельный знак
-	Метрические размеры
	DIN/ANSI

6			7
Размер резьбы		Допуск	/ тип хвостовика
	С	6HX, 2BX	Усиленный хвостовик
	Е	6GX	Усиленный хвостовик
	F	7GX	Усиленный хвостовик
	L	6HX, 2BX	Хвостовик с обнижением
	N	6GX	Хвостовик с обнижением
	Р	7GX	Хвостовик с обнижением


	8		
	Модифин	кац	ия
0	С наружным подводом СОЖ без канавок для СОЖ	D	Форма заборного конуса D
1	С внутренним подводом СОЖ по осевым каналам, без канавок для СОЖ	Ε	Форма заборного конуса Е
2	С внутренним подводом СОЖ по радиальным каналам	F	Форма заборного конуса Е с внутренним подводом СОЖ по осевым каналам, без канавок для СОЖ
5	С внутренним подводом СОЖ по осевым каналам, с канавками для СОЖ	L	Левая резьба
6	С наружным подводом СОЖ, с канавками для СОЖ	Н	Удлинённый хвостовик XL

Система обозначений сплавов твердосплавного и быстрорежущего инструмента

Пример:

W	W	60	AD
Walter	1	2	3

Раскатники машинные быстрорежущие HSS-E-PM TC420 Supreme mm

– Для обработки материалов, дающих сливную стружку

	Р	М	K	N	S	Н	0
WW60AD	••	••		••	•		
WW60BA	••	••		••	•		

DIN 2174	Обозначение	D _N	Р мм	I ₁	L _c	I ₃	d ₁ h9 мм	ММ	l ₉ мм	N	WW60AD	WW60BA
P	TC420-M5-CF-	M 5	0,8	70	8	25	6	4,9	8	5	33	33
	TC420-M6-CF-	M 6	1	80	10	30	6	4,9	8	5	(3)	33
·	TC420-M8-CF-	M 8	1,25	90	12	35	8	6,2	9	5	33	23
D_N	TC420-M10-CF-	M 10	1,5	100	15	39	10	8	11	6	33	3
+ + + + + + + + + + + + + + + + + + + +												
13												

Пример заказа инструмента из сплава WW60AD: TC420-M5-CF-WW60AD

DIN 2174	Обозначение	D _N	Р мм	l ₁	L _c	l ₃	d ₁ h9 мм	ММ	lg MM	N	WW60AD	WW60BA
P - -	TC420-M12-LF-	M 12	1,75	110	16	83	9	7	10	6	3	
_	TC420-M16-LF-	M 16	2	110	20	68	12	9	12	6	第	
+												
D_N												
↑ - L _c 19 - '		-										
-		-										

Пример заказа инструмента из сплава WW60AD: TC420-M12-LF-WW60AD

Раскатники машинные быстрорежущие HSS-E-PM TC420 Supreme mm

– Для обработки материалов, дающих сливную стружку

	Р	М	K	N	S	Н	0
WW60AD	••	••		••	•		
WW60BA	••	••		••	•		

DIN 2174	Обозначение	D _N	Р мм	l ₁	L _c	l ₃	d ₁ h9 мм	ММ	l ₉ мм	N	WW60AD	WW60BA
P	TC420-M5-EF-	M 5	0,8	70	8	25	6	4,9	8	5	33	33
	TC420-M6-EF-	M 6	1	80	10	30	6	4,9	8	5	3	23
+ +	TC420-M8-EF-	M 8	1,25	90	12	35	8	6,2	9	5	3	23
D_N	TC420-M10-EF-	M 10	1,5	100	15	39	10	8	11	6	3	23
-												

Пример заказа инструмента из сплава WW60AD: TC420-M5-EF-WW60AD

DIN 2174	Обозначение	D _N	Р мм	I ₁	L _c	I ₃ мм	d ₁ h9 мм	ММ	l ₉ мм	N	WW60AD	WW60BA
→ P -	TC420-M12-NF-	M 12	1,75	110	16	83	9	7	10	6	33	
\sim	TC420-M16-NF-	M 16	2	110	20	68	12	9	12	6	3	
DN d1 d1 + l9 + l												

Пример заказа инструмента из сплава WW60AD: TC420-M12-NF-WW60AD

Раскатники машинные быстрорежущие HSS-E-PM TC420 Supreme mm

– Для обработки материалов, дающих сливную стружку

	Р	М	K	N	S	Н	0
WW60AD	••	••	•	••	•		
WW60BA	••	••	•	••	•		

DIN 2174	Обозначение	D _N	Р мм	l ₁	L _c	I ₃	d ₁ h9 мм	ММ	l ₉ мм	N	WW60AD	WW60BA
P	TC420-M5-C2-	M 5	0,8	70	8	25	6	4,9	8	5	33	33
\sim	TC420-M6-C2-	M 6	1	80	10	30	6	4,9	8	5	3	33
† T	TC420-M8-C2-	M 8	1,25	90	12	35	8	6,2	9	5	33	#
DN	TC420-M10-C2-	M 10	1,5	100	15	39	10	8	11	6	33	3
+ + - +												
lg												

Пример заказа инструмента из сплава WW60AD: TC420-M5-C2-WW60AD

DIN 2174	Обозначение	D _N	Р мм	l ₁	L _c	l ₃	d ₁ h9 мм	ММ	lg MM	N	WW60AD	WW60BA
→ P -	TC420-M12-L2-	M 12	1,75	110	16	83	9	7	10	6	33	23
	TC420-M14-L2-	M 14	2	110	20	81	11	9	12	6	33	23
<u>+</u>	TC420-M16-L2-	M 16	2	110	20	68	12	9	12	6	33	33
D_N	TC420-M20-L2-	M 20	2,5	140	25	95	16	12	15	7	33	23
+ L _c → + +	TC420-M24-L2-	M 24	3	160	30	113	18	14,5	17	8	23	23
I3 I19												

Пример заказа инструмента из сплава WW60AD: TC420-M12-L2-WW60AD

C=2-3

36HRC

Раскатники машинные быстрорежущие HSS-E-PM TC430 Supreme mm

≤ 3×D_N

– Для обработки материалов, дающих сливную стружку – ISO M только с масляным охлаждением

	Р	М	K	N	S	Н	0
WW60EL	••	•	•	•			

DIN 2174		Обозначение	D _N	Р мм	l ₁	L _c	l ₃	d ₁ h9 мм	☐ MM	lg MM	N	WW60EL
→ P -		TC430-M3-C0-	M 3	0,5	56	6	18	3,5	2,7	6	4	23
\sim		TC430-M4-C0-	M 4	0,7	63	7	21	4,5	3,4	6	5	23
+		TC430-M5-C0-	M 5	0,8	70	8	25	6	4,9	8	5	23
DN	$ d_1$	TC430-M6-C0-	M 6	1	80	10	30	6	4,9	8	5	23
1	+ lo +	TC430-M8-C0-	M 8	1,25	90	12	35	8	6,2	9	6	23
	9	TC430-M10-C0-	M 10	1,5	100	15	39	10	8	11	7	23
- I ₁	-											

Пример заказа инструмента из сплава WW60EL: TC430-M3-C0-WW60EL

Раскатники машинные быстрорежущие HSS-E-PM TC430 Supreme mm

- Для обработки материалов, дающих сливную стружку ISO M только с масляным охлаждением

	Р	М	K	N	S	Н	0
WW60EL	••	•	•	•			
WW60AD	••	•	•	•			

DIN 2174	Обозначение	D _N	Р мм	I ₁	L _c	I ₃	d ₁ h9 мм	ММ	I ₉	N	WW60EL	WW60AD
P	TC430-M5-C1-	M 5	0,8	70	8	25	6	4,9	8	5	33	ĺ
	TC430-M6-C1-	M 6	1	80	10	30	6	4,9	8	5	*	
·	TC430-M8-C1-	M 8	1,25	90	12	35	8	6,2	9	6	33	3
D_N	TC430-M10-C1-	M 10	1,5	100	15	39	10	8	11	7	33	3
†												
l ₁												

Пример заказа инструмента из сплава WW60AD: TC430-M8-C1-WW60AD

DIN 2174	Обозначение	D _N	Р мм	l ₁	L _c	l ₃	d ₁ h9 мм	 MM	lg MM	N	WW60EL	WW60AD
P	TC430-M12-L1-	M 12	1,75	110	16	83	9	7	10	8	3	
	TC430-M16-L1-	M 16	2	110	20	68	12	9	12	8	第	3
<u> </u>												
D_N												
↑ - L _c ₁₉												
I ₁												

Пример заказа инструмента из сплава WW60AD: TC430-M12-L1-WW60AD

Раскатники машинные быстрорежущие HSS-E-PM TC430 Supreme mm

- Для обработки материалов, дающих сливную стружку
- ISO M только с масляным охлаждением

M	
DIN 13	

	Р	М	K	N	S	Н	0
WW60EL	••	•	•	•			
WW60AD	••	•	•	•			

DIN 2174	Обозначение	D_N	Р мм	l ₁	L _c	I ₃	d ₁ h9 мм	MM	lg MM	N	WW60EL	WW60AD
P	TC430-M5-C2-	M 5	0,8	70	8	25	6	4,9	8	5	33	
\sim	TC430-M6-C2-	M 6	1	80	10	30	6	4,9	8	5	33	
<u>+ </u>	TC430-M8-C2-	M 8	1,25	90	12	35	8	6,2	9	6	23	23
DN	TC430-M10-C2-	M 10	1,5	100	15	39	10	8	11	7	8	23

Пример заказа инструмента из сплава WW60AD: TC430-M8-C2-WW60AD

DIN 2174	Обозначение	D _N	Р мм	I ₁	L _c	I ₃	d ₁ h9 мм	ММ	l ₉ мм	N	WW60EL	WW60AD
P	TC430-M12-L2-	M 12	1,75	110	16	83	9	7	10	8	23	33
	TC430-M16-L2-	M 16	2	110	20	68	12	9	12	8	33	*
DN - L _c - I ₃ - I ₄ -												

Пример заказа инструмента из сплава WW60AD: TC430-M12-L2-WW60AD

36HRC

Раскатники машинные быстрорежущие HSS-E-PM TC430 Supreme mm

- Для обработки материалов, дающих сливную стружку ISO M только с масляным охлаждением

	Р	М	K	N	S	Н	0
WW60EL	••	•	•	•			
WW60AD	••	•	•	•			

 $3,5 \times D_N$

DIN 2174	Обозначение	D _N	Р мм	I ₁	L _c	I ₃	d ₁ h9 мм	 MM	lg MM	N	WW60EL	WW60AD
P	TC430-M8X1-L1-	MF 8x1	1	90	12	67	6	4,9	8	6	33	33
\sim	TC430-M10X1-L1-	MF 10x1	1	90	12	67	7	5,5	8	7	33	23
<u>+ </u>	TC430-M10X1.25-L1-	MF 10x1.25	1,25	100	15	77	7	5,5	8	7	33	23
D_N	TC430-M12X1-L1-	MF 12x1	1	100	13	73	9	7	10	8	33	23
+ L _c	TC430-M12X1.25-L1-	MF 12x1.25	1,25	100	13	73	9	7	10	8	(3)	23
- I ₁	TC430-M12X1.5-L1-	MF 12x1.5	1,5	100	13	73	9	7	10	8	33	23
	TC430-M14X1.5-L1-	MF 14x1.5	1,5	100	15	71	11	9	12	8	33	23
	TC430-M16X1.5-L1-	MF 16x1.5	1,5	100	15	58	12	9	12	8	23	23

Пример заказа инструмента из сплава WW60AD: TC430-M8X1-L1-WW60AD

Раскатники машинные быстрорежущие HSS-E-PM TC430 Supreme mm

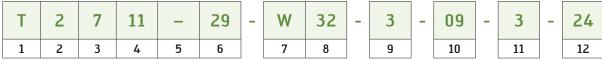
- Для обработки материалов, дающих сливную стружку
- ISO M только с масляным охлаждением

	Р	М	K	N	S	Н	0
WW60EL	••	•	•	•			
WW60AD	••	•	•	•			

DIN 2174	Обозначение	D _N	Р мм	I ₁	L _c	I ₃	d ₁ h9 мм	 MM	l ₉	N	WW60EL	WW60AD
→ P -	TC430-M8X1-L2-	MF 8x1	1	90	12	67	6	4,9	8	6	33	33
\sim	TC430-M10X1-L2-	MF 10x1	1	90	12	67	7	5,5	8	7	*	33
<u>+ </u>	TC430-M10X1.25-L2-	MF 10x1.25	1,25	100	15	77	7	5,5	8	7	(3)	#
D_N	TC430-M12X1-L2-	MF 12x1	1	100	13	73	9	7	10	8	(3)	#
→ L _c → g ←	TC430-M12X1.25-L2-	MF 12x1.25	1,25	100	13	73	9	7	10	8	#	#
	TC430-M12X1.5-L2-	MF 12x1.5	1,5	100	13	73	9	7	10	8	(3)	#
	TC430-M14X1.5-L2-	MF 14x1.5	1,5	100	15	71	11	9	12	8	(3)	3
	TC430-M16X1.5-L2-	MF 16x1.5	1,5	100	15	58	12	9	12	8	(3)	23

Пример заказа инструмента из сплава WW60AD: TC430-M8X1-L2-WW60AD

36HRC 1200 -200


Обзор программы резьбофрез

Вид обработки		Универсальная													
Глубина резьбы	1,5×D _N	2,0 × D _N	2,5	× D _N	3,0 × D _N										
Обозначение	чение T2710 T2711 T2712 в Многорядная резьбофреза резьбофреза с пластинами Многорядная резьбофреза с пластинами С пластинами С пластинами С пластинами Осевой / радиальный Осевой / радиальн	712	T2713												
Описание	резьбофреза	резьбофреза	резьбофреза	Однорядная резьбофреза с пластинами	Однорядная резьбофреза с пластинами										
Подвод СОЖ	Осевой / радиальный	Осевой / радиальный	Осевой / радиальный	Осевой / радиальный	Осевой / радиальный										
Покрытие / сплав	WSM37S	WSM37S WSM37S WSM37S WSM37S		WSM37S	WSM37S										
Хвостовик	DIN 1835 B	DIN 1835 B			DIN 1835 B / Walter Capto™										
Вид резьбы Стр.	M / MF 138 UNC / UNF / UN 140	M / MF 142 UNC / UNF / UN 144	M / MF 146 UNC / UNF / UN 148	M / MF 150 UNC / UNF / UN 150	M / MF 152 UNC / UNF / UN 152										

Система обозначений резьбофрез с пластинами

Инструмент:

Назначение инструмента

Т Threading (нарезание резьбы)

2

3

7 Резьбофреза со сменными пластинами

 4

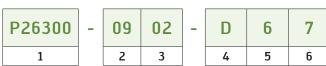
 Тип инструмента

 10
 Универсальные с трёхгранными пластинами
 1,5 × D_N

 11
 Универсальные с трёхгранными пластинами
 2,0 × D_N

 12
 Универсальные с трёхгранными пластинами
 2,5 × D_N

 13
 Универсальные с трёхгранными пластинами
 3,0 × D_N / модульн.


5
1-й разделительный знак
— Метрические размеры
- Дюймовые размеры

Вид крепления

W WeldonC Walter Capto™

8 Размер крепления 9 Число эффективных зубьев 10 Размер пластины 11 Количество режущих рядов 12 Расстояние между режущими рядами

Пластина:

W	SM	37	S	
Walter	7	8	9	

1 Серия

Р26300 Резьбонарезная фрезерная пластина, трёхгранная с задними углами

Р26310 Резьбонарезная фрезерная пластина, трёхгранная с задними углами, для однорядных инструментов

Радиус пластины / спецификация резьбы

01 = 0.1 мм
02 = 0.2 мм
04 = 0.4 мм
G11 = Резьба G, 11 ниток на дюйм

3

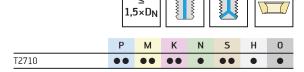
6 Задний угол 1 7 7
Область
применения

SM Универсальное
применение
при обработке
материалов
ISO P, M, K, N, S и H

9 Серия S Tiger-tec® Silver

Резьбофрезы со сменными пластинами

T2710 mm



- Универсальная резьбофреза со сменными пластинами
- Программируемый радиус: Walter GPS / Техническая информация

Инструмент	Обозначение	D _N	P _{max}	D _c	I ₂₁	l ₃	l ₁	d ₁	Z	Кол-во пластин	Тип
Хвостовик по DIN 1835 В	★ T2710-17-W16-3-06-2-15	M 20	2,50	16,5	15	33	88	16	3	6	P26300-06
- l ₁ - l ₂ - l ₂ - l ₃ - l ₄ - l ₂ - l ₄ - l ₅ -											
Хвостовик по DIN 1835 В	★ T2710-19-W20-3-06-3-12	M 24	3,00	19	12	39,1	98	20	3	9	P26300-06
11	★ T2710-24-W25-3-09-3-14	M 30	3,50	24	14	49,5	117	25	3	9	P26300-09
- 1 ₂₁ - 1	★ T2710-29-W32-3-09-3-16	M 36	4,00	29	16	58,5	131	32	3	9	F 20300-03
	★ T2710-35-W32-3-11-3-18	M 42	4,50	35	18	68,5	139	32	3	9	P26300-11
	★ T2710-40-W40-3-14-3-20	M 48	5,00	40	20	79	163	40	3	9	
	★ T2710-44-W40-3-14-3-22	M 56	5,50	44	22	91	174	40	3	9	P26300-14
	★ T2710-52-W40-4-14-3-24	M 64	6,00	52	24	103	185	40	4	12	

Изменяемый подвод СОЖ: при обработке глухих отверстий необходимо удалить резьбовую заглушку из отверстия для подвода СОЖ с торцевой стороны Сборочные детали входят в комплект поставки

Сборочные					
детали	D _с [мм]	16,5-19	24-29	35	40-52
	Винт пластины Момент затяжки	FS2147 (Torx 6IP) 0,6 Нм	FS2111 (Torx 7IP) 0,9 Нм	FS2061 (Torx 7IP) 0,9 Нм	FS1457 (Torx 9IP) 2,0 Hm
_	Винтовая заглушка отверстия для подвода СОЖ Момент затяжки	FS2147 (Torx 6IP) 0,6 Нм	FS2111 (Torx 7IP) 0,9 Нм	FS2061 (Torx 7IP) 0,9 Нм	FS1457 (Torx 9IP) 2,0 Нм

Комплектующие	D _c [мм]	16,5–19	24–35	40-52
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4-1,2 Нм	FS2001 0,4-1,2 Нм	FS2003 1,5-5,0 Нм
332	Рукоятка динамометрической отвёртки, цифровая Момент затяжки			FS2248 1,0-6,0 Нм
	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)	FS2013 (Torx 9IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)	FS1484 (Torx 9IP)

Резьбонарезные фрезерные пластины Р26300 KN S н о HC HC HC HC HC HC Шаг Кол-во режущих н WSM37S WSM37S WSM37S Шаг резьбы Р резьбы Р Ниток Обозначение Размер на дюйм ММ ММ ММ 88888 P26300-0601-D67 6 0,1 1,40-2,90 18-9 6,73 P26300-0602-D67 **88888** 0,2 3,00-3,20 6,58 6 8 P26300-0901-D67 9 1,40-2,90 18-9 9,48 **88888** P26300-0902-D67 9 3,00-4,30 8-6 9,34 **88888** 0.2 3 P26300-1102-D67 0,2 3,00-4,50 8-6 10,71 **88888** 11 3 P26300-1401-D67 14 1,40-2,90 18-9 13,87 8 8 8 8 8 0,1 P26300-1402-D67 14 0,2 3,00-5,20 8-5 13,72 **8 8 8 8 8** P26300-1404-D67 88888 14 0.4 5,50-6,40 4.5-4 13.43 P26300-0601-D61 6 1,40-2,90 18-9 6,73 3 **888888** P26300-0602-D61 6 3.00-3.20 6.58 **888888** 0.2 8 3 P26300-0901-D61 **888888** q 0,1 1,40-2,90 18-9 9,48 P26300-0902-D61 9 3,00-4,30 8-6 9,34 **888888** P26300-1101-D61 11 0,1 1,40-2,90 18-9 10,85 **888888** P26300-1102-D61 3,00-4,50 **888888** 11 8-6 10,71 P26300-1401-D61 14 0,1 1,40-2,90 18-9 13,87 **888888** P26300-1402-D61 14 3,00-5,20 8-5 13,72 3 **888888** 0,2 **888888** P26300-1404-D61 14 0,4 5,50-6,40 4,5-4 13,43

НС = твёрдый сплав с покрытием

Выбор инструмента

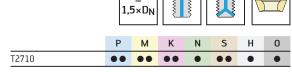
Метрическая резьба Резьба с крупным шагом					Резьба с мелким шагом															
Обозначение корпуса	I ₃ [мм]	M20/ M22	M24/ M27	M30/ M33	M36/ M39	M42/ M45	M48/ M52	M56/ M59	M64/ M68	D _N [мм]	1,5	2	2,5	3	P [1	им] 4	4,5	5	5,5	6
T2710-17-W16-3-06-2-15	33,0	0601								≥ 20	0601		0601							
T2710-19-W20-3-06-3-12	39,1		0602							≥ 24	0601	0601		0602						
T2710-24-W25-3-09-3-14	49,5			0902						≥ 30		0901			0902					
T2710-29-W32-3-09-3-16	58,5				0902					≥ 36		0901				0902				
T2710-35-W32-3-11-3-18	68,5					1102				≥ 42	1101	1101		1102			1102			
T2710-40-W40-3-14-3-20	79,0						1402			≥ 48		1401	1401			1402		1402		
T2710-44-W40-3-14-3-22	91,0							1404		≥ 56		1401							1404	
T2710-52-W40-4-14-3-24	103,0								1404	≥ 64	1401	1401		1402		1402				1404

Пример: при использовании корпуса T2710-35-W32-3-11-3-18 и пластины типоразмера 11 радиусом 0,2 мм (1102 -> P26300-1102..) возможна обработка резьбы M42 или M45. Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы с мелким шагом 3 мм и 4,5 мм, если номинальный диаметр ≥ 42 мм.

B 5

Резьбофрезы со сменными пластинами

T2710 mm



- Универсальная резьбофреза со сменными пластинами
 Программируемый радиус: Walter GPS / Техническая информация

Инструмент	Обозначение	D _N	Р _{тах} Ниток на дюйм	D _c	I ₂₁	I ₃	I ₁	d ₁	Z	Кол-во пластин	
Хвостовик по DIN 1835 В	★ T2710-18-W16-3-06-2-11.3	UNC 7/8-9	9	18	11,3	36,5	92	16	3	6	P26300-06
11											
Хвостовик по DIN 1835 В	★ T2710-20-W20-3-06-3-12.7	UNC 1-8	8	20	12,7	41,1	100	20	3	9	P26300-06
- I1	★ T2710-26-W25-3-09-3-12.7	UN 1.1/4-8	8	26	12,7	52,2	119	25	3	9	
- I3	★ T2710-31-W32-3-09-3-19.1	UN 1.1/2-8	8	31	19,05	63,7	135	32	3	9	P26300-09
	★ T2710-43-W40-4-09-3-25.4	UN 2-6	UN 2-6 6 43 25,4 80,7 160 4		40	4	12				

Изменяемый подвод СОЖ: при обработке глухих отверстий необходимо удалить резьбовую заглушку из отверстия для подвода СОЖ с торцевой стороны Сборочные детали входят в комплект поставки

Сборочные детали	D _c [mm]	18–20	26-43
	Винт пластины	FS2147 (Torx 6IP)	FS2111 (Torx 7IP)
	Момент затяжки	0,6 Нм	0,9 Hm
	Винтовая заглушка отверстия для подвода СОЖ	FS2147 (Torx 6IP)	FS2111 (Torx 7IP)
	Момент затяжки	0,6 Нм	0,9 Нм

Комплектующие	D _c [MM]	18–20	26–43
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4–1,2 Нм	FS2001 0,4-1,2 Нм
c	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)

Резьбонарезнь	іе фрезерные пласти	ны Р	2630	00													
							N N	Р	М	K	N	s	Н	0			
							кромок	НС	HC	НС	нс	НС	нс	нс			
	Обозначение	Размер	r MM	Шаг резьбы Р мм	Шаг резьбы Р Ниток на дюйм	I MM	Кол-во режущих к	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S			
60° r	P26300-0601-D67	6	0,1	1,40-2,90	18-9	6,73	3										
	P26300-0602-D67	6	0,2	3,00-3,20	8	6,58	3		8				4				
	P26300-0901-D67	9	0,1	1,40-2,90	18-9	9,48	3		8	4			8				
	P26300-0902-D67	9	0,2	3,00-4,30	8-6	9,34	3										
I																	
60°, r	P26300-0601-D61	6	0,1	1,40-2,90	18-9	6,73	3	33	*	*	33	33	33				
	P26300-0602-D61	6	0,2	3,00-3,20	8	6,58	3	33	*	*	33	3					
1	P26300-0901-D61	9	0,1	1,40-2,90	18-9	9,48	3					33				\exists	
	P26300-0902-D61	9	0,2	3,00-4,30	8-6	9,34		3								\dashv	+
																	\pm

НС = твёрдый сплав с покрытием

Выбор инструмента

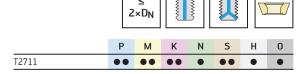
Резьба UN	UI	NC	UNF				UN Ниток на дюйм							
Обозначение корпуса	l ₃ [мм]	7/8 -9	1-8	1 1/8 –12	1 1/4 -12	1 3/8 -12	1 1/2 –12	D _N	18*	16	14	12	8	6
T2710-18-W16-3-06-2-11.3	36,5	0601						≥ 0,87"	0601					
T2710-20-W20-3-06-3-12.7	41,1		0602	0601	0601	0601	0601	≥ 1,00"	0601	0601	0601	0601	0602	
T2710-26-W25-3-09-3-12.7	52,2				0601	0601	0601	≥ 1,25"	0901	0901	0901	0901	0902	
T2710-31-W32-3-09-3-19.1	63,7						0601	≥ 1,50"		0901		0901	0902	
T2710-43-W40-4-09-3-25.4	80,7							≥ 2,00"	0901	0901	0901	0901	0902	0902

Пример: при использовании корпуса T2710-20-W20-3-06-3-12.7 и пластины типоразмера 06 радиусом 0,2 мм (0602 -> P26300-0602...) возможна обработка резьбы UNC 1". Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы UN с 8 TPI, если номинальный диаметр ≥ 1".

* = UNEF

Резьбофрезы со сменными пластинами

T2711 mm



- Универсальная резьбофреза со сменными пластинами
- Программируемый радиус: Walter GPS / Техническая информация

Инструмент	Обозначение	D _N	P _{max}	D _c	I ₂₁	l ₃	l ₁	d ₁	Z	Кол-во пластин	Тип	
Хвостовик по DIN 1835 В	★ T2711-17-W16-3-06-2-20	M 20	2,50	16,5	20	43	98	16	3	6	D26300 06	
13 - 121 - 1	T2711-19-W20-3-06-2-24	M 24	3,00	19	24	51	110	20	3	6	P26300-06	
	T2711-24-W25-3-09-2-31.5	M 30	3,50	24	31,5	64,5	132	25	3	6	P26300-09	
	T2711-52-W40-4-14-2-60	M 64	6,00	52	60	135	217	40	4	8	P26300-14	
Хвостовик по DIN 1835 B	T2711-29-W32-3-09-3-24	M 36	4,00	29	24	76,5	149	32	3	9	P26300-09	
- I1	T2711-35-W32-3-11-3-27	M 42	4,50	35	27	89,5	160	32	3	9	P26300-11	
- l ₂₁ - l	T2711-40-W40-3-14-3-30	M 48	5,00	40	30	103	187	40	3	9	D2C200 1/	
	T2711-44-W40-3-14-3-33	M 56	5,50	44	33	119	202	40	3	9	P26300-14	

Изменяемый подвод СОЖ: при обработке глухих отверстий необходимо удалить резьбовую заглушку из отверстия для подвода СОЖ с торцевой стороны Сборочные детали входят в комплект поставки

Сборочные детали	D _c [mm]	16,5–19	24–29	35	40-52
	Винт пластины	FS2147 (Torx 6IP)	FS2111 (Torx 7IP)	FS2061 (Torx 7IP)	FS1457 (Torx 9IP)
	Момент затяжки	0,6 HM	0,9 Нм	0,9 Нм	2,0 Нм
	Винтовая заглушка отверстия для подвода СОЖ	FS2147 (Torx 6IP)	FS2111 (Torx 7IP)	FS2061 (Torx 7IP)	FS1457 (Torx 9IP)
	Момент затяжки	0,6 HM	0,9 HM	0,9 HM	2,0 Нм

Комплектующие	D _c [mm]	16,5–19	24–35	40-52
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4-1,2 Нм	FS2001 0,4-1,2 Нм	FS2003 1,5–5,0 Нм
335	Рукоятка динамометрической отвёртки, цифровая Момент затяжки			FS2248 1,0-6,0 Нм
	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)	FS2013 (Torx 9IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)	FS1484 (Torx 9IP)

Резьбонарезные фрезерные пластины Р26300

							кромок	Р	М	K	N	S HC	H	0			T
	Обозначение	Размер	r MM	Шаг резьбы Р мм	Шаг резьбы Р Ниток на дюйм	I MM	Кол-во режущих кр	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S			
60° r	P26300-0601-D67	6	0,1	1,40-2,90	18-9	6,73	3						(4)		П		
	P26300-0602-D67	6	0,2	3,00-3,20	8	6,58	3						(3)		\Box	T	\top
	P26300-0901-D67	9	0,1	1,40-2,90	18-9	9,48	3										
	P26300-0902-D67	9	0,2	3,00-4,30	8-6	9,34	3										
	P26300-1102-D67	11	0,2	3,00-4,50	8-6	10,71	3										
	P26300-1401-D67	14	0,1	1,40-2,90	18-9	13,87	3										
	P26300-1402-D67	14	0,2	3,00-5,20	8-5	13,72	3										
	P26300-1404-D67	14	0,4	5,50-6,40	4,5-4	13,43	3										
50° r	P26300-0601-D61	6	0,1	1,40-2,90	18-9	6,73	3	3	3	3	33	33	3			П	
	P26300-0602-D61	6	0,2	3,00-3,20	8	6,58	3		33	*	33	33					
	P26300-0901-D61	9	0,1	1,40-2,90	18-9	9,48	3	33	33	*	*	33	3				
	P26300-0902-D61	9	0,2	3,00-4,30	8-6	9,34	3		33	*	33	33					
	P26300-1101-D61	11	0,1	1,40-2,90	18-9	10,85	3	3	3		33	33	3				
	P26300-1102-D61	11	0,2	3,00-4,50	8-6	10,71	3	3	_	_		33					\top
	P26300-1401-D61	14	0,1	1,40-2,90	18-9	13,87	3	3	3	3	33	33	3		\Box	\exists	
	P26300-1402-D61	14	0,2	3,00-5,20	8-5	13,72	3	3	3	_		33	3			T	T
	P26300-1404-D61	14	0,4	5,50-6,40	4,5-4	13,43	3	33	_	_	_	33					

НС = твёрдый сплав с покрытием

Выбор инструмента

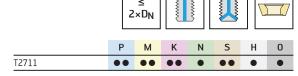
Метрическая резь	ба	Резьба с крупным шагом											Pe	езьба с	мелки	ім шаго	М			
															P [1	мм]				
Обозначение корпуса	I ₃ [мм]	M20/ M22	M24/ M27	M30/ M33	M36/ M39	M42/ M45	M48/ M52	M56/ M59	M64/ M68	D _N [мм]	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6
T2711-17-W16-3-06-2-20	43	0601								≥ 20		0601	0601							
T2711-19-W20-3-06-2-24	51		0602							≥ 24	0601	0601		0602						
T2711-24-W25-3-09-2-31.5	64,5			0902						≥ 30	0901				0902					
T2711-29-W32-3-09-3-24	76,5				0902					≥ 36	0901	0901		0902		0902				
T2711-35-W32-3-11-3-27	89,5					1102				≥ 42	1101			1102			1102			
T2711-40-W40-3-14-3-30	103						1402			≥ 48	1401	1401	1401	1402				1402		
T2711-44-W40-3-14-3-33	119							1404		≥ 56	1401			1402					1404	
T2711-52-W40-4-14-2-60	135								1404	≥ 64	1401	1401	1401	1402		1402		1402		1404

Пример: при использовании корпуса T2711-29-W32-3-09-3-24 и пластины типоразмера 09 радиусом 0,2 мм (0902 -> P26300-0902..) возможна обработка резьбы М36 или М39. Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы с мелким шагом 3 и 4 мм, если номинальный диаметр ≥ 36 мм.

B 5

Резьбофрезы со сменными пластинами

T2711 mm



- Универсальная резьбофреза со сменными пластинами
 Программируемый радиус: Walter GPS / Техническая информация

Инструмент	Обозначение	D _N	Р _{тах} Ниток на дюйм	D _c	I ₂₁	I ₃	I ₁	d ₁	Z	Кол-во пластин	Тип
Хвостовик по DIN 1835 В	★ T2711-18-W16-3-06-2-25.4	UNC 7/8-9	9	18	25,4	47,5	103	16	3	6	P26300-06
h	T2711-20-W20-3-06-2-25.4	UNC 1-8	8	20	25,4	53,9	113	20	3	6	P20300-00
- 3 - - 21 - 	T2711-26-W25-3-09-2-32.7	UNC 1.1/4-7	7	26	32,66	68	135	25	3	6	P26300-09
Хвостовик по DIN 1835 B	T2711-31-W32-3-09-3-25.4	UNC 1.1/2-6	6	31	25,4	80,7	153	32	3	9	P26300-09
13 - 121 - 12											

Изменяемый подвод СОЖ: при обработке глухих отверстий необходимо удалить резьбовую заглушку из отверстия для подвода СОЖ с торцевой стороны Сборочные детали входят в комплект поставки

Сборочные детали	D _c [мм]	18–20	26–31
	Винт пластины Момент затяжки	FS2147 (Torx 6IP) 0,6 HM	FS2111 (Torx 7IP) 0,9 Нм
	Винтовая заглушка отверстия для подвода СОЖ Момент затяжки	FS2147 (Torx 6IP) 0,6 HM	FS2111 (Torx 7IP) 0,9 Нм

Комплектующие	D _c [MM]	18–20	26–31
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4–1,2 Нм	FS2001 0,4-1,2 Нм
c	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)

Резьбонарезные фрезерные пластины Р26300																	
							N N	Р	М	K	N	s	Н	0			
							кромок	НС	нс	НС	нс	НС	нс	нс			
	Обозначение	Размер	r MM	Шаг резьбы Р мм	Шаг резьбы Р Ниток на дюйм	I MM	Кол-во режущих к	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S			
60° r	P26300-0601-D67	6	0,1	1,40-2,90	18-9	6,73	3										
	P26300-0602-D67	6	0,2	3,00-3,20	8	6,58	3		8				4				
	P26300-0901-D67	9	0,1	1,40-2,90	18-9	9,48	3		8	4			8				
	P26300-0902-D67	9	0,2	3,00-4,30	8-6	9,34	3										
I																	
60°, r	P26300-0601-D61	6	0,1	1,40-2,90	18-9	6,73	3	33	*	*	33	33	33				
	P26300-0602-D61	6	0,2	3,00-3,20	8	6,58	3	33	*	*	33	33					
	P26300-0901-D61	9	0,1	1,40-2,90	18-9	9,48	3					33				\exists	
	P26300-0902-D61	9	0,2	3,00-4,30	8-6	9,34		3								\dashv	+
																	\pm

НС = твёрдый сплав с покрытием

Выбор инструмента

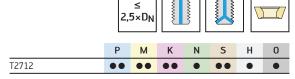
Резьба UN			UI	NC				UI	NF			UN Ниток на дюйм						
															Ниток н	а дюйм		
Обозначение корпуса	I ₃ [мм]	7/8 -9	1-8	1 1/4 -7	11/2 -6	7/8 -14	1–12	1 1/8 -12	1 1/4 -12	1 3/8 -12	1 1/2 -12	D _N	18*	16	14	12	8	6
T2711-18-W16-3-06-2-25.4	47,5	0601				0601	0601	0601	0601	0601	0601	≥ 0,87"	0601	0601	0601	0601		
T2711-20-W20-3-06-2-25.4	53,9		0602				0601	0601	0601	0601	0601	≥ 1,00"	0601	0601	0601	0601	0602	
T2711-26-W25-3-09-2-32.7	68			0902								≥ 1,25"			0901			
T2711-31-W32-3-09-3-25.4	80,7				0902						0901	≥ 1,50"	0901	0901	0901	0901	0902	0902

* = UNEF

Пример: при использовании корпуса T2711-31-W32-3-09-3-25.4 и пластины типоразмера 09 радиусом 0,2 мм (0902 -> P26300-0902...) возможна обработка резьбы UNC 1 1/2". Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы UN с 8 и 6 ТРІ, если номинальный диаметр \geq 1,5".

Резьбофрезы со сменными пластинами

T2712 mm



- Универсальная резьбофреза со сменными пластинами
 Программируемый радиус: Walter GPS / Техническая информация

Инструмент	Обозначение	D_N	P _{max}	D _с мм	I ₂₁	L _c	l ₃	l ₁	d ₁	Z	Кол-во пластин	
Хвостовик по DIN 1835 B	T2712-24-W25-3-09-2-31.5	M 30	3,50	24	31,5	63	79,5	147	25	3	6	P26300-09
	T2712-29-W32-3-09-2-36	M 36	4,00	29	36	72	94,5	167	32	3	6	F20300-09
	T2712-35-W32-3-11-2-40.5	M 42	4,50	35	40,5	81	110,5	180	32	3	6	P26300-11
121-	T2712-40-W40-3-14-2-50	M 48	5,00	40	50	100	127	211	40	3	6	P26300-14

Изменяемый подвод СОЖ: при обработке глухих отверстий необходимо удалить резьбовую заглушку из отверстия для подвода СОЖ с торцевой стороны Сборочные детали входят в комплект поставки

Сборочные детали	D _c [mm]	24–29	35	40
	Винт пластины Момент затяжки	FS2111 (Torx 7IP) 0,9 HM	FS2061 (Torx 7IP) 0,9 HM	FS1457 (Torx 9IP) 2,0 Нм
	Винтовая заглушка отверстия для подвода СОЖ Момент затяжки	FS2111 (Torx 7IP) 0,9 Hm	FS2061 (Torx 7IP) 0,9 HM	FS1457 (Torx 9IP) 2,0 HM

Комплектующие	D _c [mm]	24-35	40
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4-1,2 Нм	FS2003 1,5–5,0 Нм
333	Рукоятка динамометрической отвёртки, цифровая Момент затяжки		FS2248 1,0-6,0 Нм
	Вставка	FS2011 (Torx 7IP)	FS2013 (Torx 9IP)
	Отвёртка	FS2088 (Torx 7IP)	FS1484 (Torx 9IP)

Резьбонарезные фрезерные пластины Р26300																	
							40K	Р	М	K	N	S	Н	0	П		T
							кромок	HC	HC	HC	HC	HC	HC	НС			
	Обозначение	Размер	r MM	Шаг резьбы Р мм	Шаг резьбы Р Ниток на дюйм	I MM	Кол-во режущих н	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S			
60°, r	P26300-0901-D67	9	0,1	1,40-2,90	18-9	9,48	3										
	P26300-0902-D67	9	0,2	3,00-4,30	8-6	9,34	3										
	P26300-1102-D67	11	0,2	3,00-4,50	8-6	10,71	3			(3)						T	
	P26300-1401-D67	14	0,1	1,40-2,90	18-9	13,87	3										
I	P26300-1402-D67	14	0,2	3,00-5,20	8-5	13,72	3										
	P26300-1404-D67	14	0,4	5,50-6,40	4,5-4	13,43	3										
60° r	P26300-0901-D61	9	0,1	1,40-2,90	18-9	9,48	3	3	*	3	3	33	3			П	
	P26300-0902-D61	9	0,2	3,00-4,30	8-6	9,34	3						33				
	P26300-1101-D61	11	0,1	1,40-2,90	18-9	10,85	3			3	3	3			П	П	
	P26300-1102-D61	11	0,2	3,00-4,50	8-6	10,71	3	33	*		33	33	33			\sqcap	
	P26300-1401-D61	14	0,1	1,40-2,90	18-9	13,87	3	33	*	33		33	33			٦	
	P26300-1402-D61	14	0,2	3,00-5,20	8-5	13,72	3	3		33		33	3				
	P26300-1404-D61	14	0,4	5,50-6,40	4,5-4	13,43	3	33	33	33	23	33	33				

НС = твёрдый сплав с покрытием

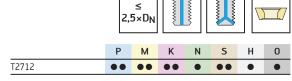
Выбор инструмента

Метрическая резьба		Рез	ьба с кру	иным ша	ІГОМ	Резьба с мелким шагом Р [мм]									
Обозначение корпуса	I ₃ [мм]	M30/ M33	M36/ M39	M42/ M45	M48/ M52	D _N [мм]									
T2712-24-W25-3-09-2-31.5	79,5	0902				≥ 30	0901				0902				
T2712-29-W32-3-09-2-36	94,5		0902			≥ 36	0901	0901		0902		0902			
T2712-35-W32-3-11-2-40.5	110,5			1102		≥ 42	1101						1102		
T2712-40-W40-3-14-2-50	127				1402	≥ 48		1401	1401					1402	

Пример: при использовании корпуса T2712-29-W32-3-09-2-36 и пластины типоразмера 09 радиусом 0,2 мм (0902 -> P26300-0902...) возможна обработка резьбы М36 или М39. Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы с мелким шагом 3 и 4 мм, если номинальный диаметр ≥ 36 мм.

Резьбофрезы со сменными пластинами

T2712 mm



- Универсальная резьбофреза со сменными пластинами
 Программируемый радиус: Walter GPS / Техническая информация

Инструмент	Обозначение	D _N	Р _{тах} Ниток на дюйм	D _c	I ₂₁	L _c	I ₃	l ₁ мм	d ₁ мм	Z	Кол-во пластин	Тип
Хвостовик по DIN 1835 B	T2712-26-W25-3-09-2-32.7	UNC 1 1/4-7	7	26	32,66	65,32	84	151	25	3	6	P26300-09
	T2712-31-W32-3-09-2-38.1	UNC 1 1/2-6	6	31	38,1	76,2	99,8	172	32	3	6	P20300-09
- 13 - 121 - 121												

Изменяемый подвод СОЖ: при обработке глухих отверстий необходимо удалить резьбовую заглушку из отверстия для подвода СОЖ с торцевой стороны Сборочные детали входят в комплект поставки

Сборочные детали	D _c [мм]	26–31
	Винт пластины Момент затяжки	FS2111 (Torx 7IP) 0,9 Hm
	Винтовая заглушка отверстия для подвода СОЖ Момент затяжки	FS2111 (Torx 7IP) 0,9 Hm

Комплектующие	D _c [MM]	26–31
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4-1,2 Нм
C	Вставка	FS2011 (Torx 7IP)
	Отвёртка	FS2088 (Torx 7IP)

					Шаг		х кромок		нс		нс		НС	нс			
	Обозначение	Размер	r MM	Шаг резьбы Р мм	резьбы Р Ниток на дюйм	I MM	Кол-во режущих	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S			
rr	P26300-0901-D67	9	0,1	1,40-2,90	18-9	9,48	3		(3)		(4)	(3)					Т
	P26300-0902-D67	9	0,2	3,00-4,30	8-6	9,34	3	(2)	49		49	49	49				
	P26300-0901-D61	9	0,1	1,40-2,90	18-9	9,48	3	23	33	33	28	23	23			+	+
	P26300-0902-D61	9	0,2	3,00-4,30	8-6	9,34	3	23				33			#	_	_
																+	+

Выбор инструмента

Резьба UN		UI	NC	UNF				UN						
					Ниток на дюйм									
Обозначение корпуса	l ₃ [мм]	1 1/4-7	1 1/2-6	1 1/2-12	D_N	18*	16	14	12	8	6			
T2712-26-W25-3-09-2-32.7	84	0902			≥ 1,25"			0901						
T2712-31-W32-3-09-2-38.1	99,8		0902	0901	≥ 1,50"	0901	0901	0901	0901	0902	0902			

Пример: при использовании корпуса T2712-31-W32-3-09-2-38.1 и пластины типоразмера 09 радиусом 0.2 мм (0902 -> P26300-0902...) возможна обработка резьбы UNC 1 1/2". Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы UN с 8 и 6 TPI, если номинальный диаметр ≥ 1.5 ".

* UNEF

Резьбофрезы со сменными пластинами

T2712 mm

- Универсальная резьбофреза со сменными пластинами
 Программируемый радиус: Walter GPS / Техническая информация

	2,	≤ 5×D _N	***************************************	www.			
	Р	М	K	N	S	Н	0
T2712	••	••	••	•	••	•	•

Инструмент	Обозначение	D _N [мм]	D _N [дюйм]	P _{max}	Р _{тах} Ниток на дюйм	D _с мм	I ₃	I ₁	d ₁ мм	Z	Кол-во пластин	
Хвостовик по DIN 1835 B	★ T2712-17-W16-3-06	M 20	0.87"	2,50	9	16,5	53	108	16	3	3	P26300-06
	T2712-19-W20-3-06	M 24	1.00"	3,00	8	19	63	123	20	3	3	F20300-00
13	T2712-24-W25-3-09	M 30	1.25"	3,50	7	24	79,5	148	25	3	3	P263 . 0-09
0,	T2712-29-W32-3-09	M 36	1.50"	4,00	6	29	94,5	167	32	3	3	P203.0-09
1	T2712-35-W32-3-11	M 42	1.75"	4,50	6	35	110,5	181	32	3	3	P26300-11
	T2712-40-W40-3-14 M 48 2.00"		5,00	5	40	127	211	40	3	3		
	T2712-44-W40-3-14	M 56	2.25"	5,50	4,5	44	147	230	40	3	3	P263 . 0-14
	T2712-52-W40-4-14	M 64	2.75"	6,00	4	52	167	249	40	4	4	

Изменяемый подвод СОЖ: при обработке глухих отверстий необходимо удалить резьбовую заглушку из отверстия для подвода СОЖ с торцевой стороны Резьба G (BSP) представлена на отдельном развороте в каталоге новинок 2020.

Сборочные детали входят в комплект поставки

Сборочные детали	D _с [мм]	16,5–19	24–29	35	40-52
	Винт пластины Момент затяжки	FS2147 (Torx 6IP) 0,6 Нм	FS2111 (Torx 7IP) 0,9 HM	FS2061 (Torx 7IP) 0,9 Нм	FS1457 (Torx 9IP) 2,0 HM
_	Винтовая заглушка отверстия для подвода СОЖ Момент затяжки	FS2147 (Torx 6IP) 0,6 Нм	FS2111 (Torx 7IP) 0,9 Нм	FS2061 (Torx 7IP) 0,9 Нм	FS1457 (Torx 9IP) 2,0 Нм

Комплектующие	D _c [mm]	16,5–19	24–35	40-52
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4-1,2 Нм	FS2001 0,4-1,2 Нм	FS2003 1,5–5,0 Нм
	Рукоятка динамометрической отвёртки, цифровая Момент затяжки			FS2248 1,0-6,0 Нм
	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)	FS2013 (Torx 9IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)	FS1484 (Torx 9IP)

Резьбонарезные фрезерные пластины Р26300 S н о кромок HC HC HC HC HC HC HC Шаг резьбы Р Шаг резьбы Р Ниток Обозначение на дюйм Размер ММ ММ ММ P26300-0601-D67 1,40-2,90 18-9 6,73 0,1 6 P26300-0602-D67 6 3,00-3,20 8 6,58 3 P26300-0901-D67 9 0,1 1,40-2,90 9,48 **88888**

P26300-0902-D67	9	0,2	3,00-4,30	8-6	9,34	3				8						
P26300-1102-D67	11	0,2	3,00-4,50	8-6	10,71	3										
P26300-1401-D67	14	0,1	1,40-2,90	18-9	13,87	3										
P26300-1402-D67	14	0,2	3,00-5,20	8-5	13,72	3										
P26300-1404-D67	14	0,4	5,50-6,40	4,5-4	13,43	3										
P26300-0601-D61	6	0,1	1,40-2,90	18-9	6,73	3	3	3		3						
P26300-0602-D61	6	0,2	3,00-3,20	8	6,58	3				3						
P26300-0901-D61	9	0,1	1,40-2,90	18-9	9,48	3	33			3	*					
P26300-0902-D61	9	0,2	3,00-4,30	8-6	9,34	3				3						
P26300-1101-D61	11	0,1	1,40-2,90	18-9	10,85	3	33			3	*					
P26300-1102-D61	11	0,2	3,00-4,50	8-6	10,71	3				3						
P26300-1401-D61	14	0,1	1,40-2,90	18-9	13,87	3	33			3	*					
P26300-1402-D61	14	0,2	3,00-5,20	8-5	13,72	3										
P26300-1404-D61	14	0,4	5,50-6,40	4,5-4	13,43	3	3	3								
·							uС.	_ TD	önn	LIŬA C	 D C I	TOKE	31 ITI	1014		_

НС = твёрдый сплав с покрытием

Выбор инструмента

Метрическая резьба Резьба с крупным шагом									Резьба с мелким шагом									
														P [1	мм]			
Обозначение корпуса	l ₃ [мм]	M20/ M22	M24/ M27	M30/ M33	M36/ M39	M42/ M45	M48/ M52	M56/ M59	M64/ M68	D _N [мм]	1,5–2,5	3	3,5	4	4,5	5	5,5	6
T2712-17-W16-3-06	53	0601								≥ 20	0601							
T2712-19-W20-3-06	63		0602							≥ 24	0601	0602						
T2712-24-W25-3-09	79,5			0902						≥ 30	0901	09	02					
T2712-29-W32-3-09	94,5				0902					≥ 36	0901		0902					
T2712-35-W32-3-11	110,5					1102				≥ 42	1101		11	02				
T2712-40-W40-3-14	127						1402			≥ 48	1401	1 1402						
T2712-44-W40-3-14	147							1404		≥ 56	5 1401 1402						1404	
T2712-52-W40-4-14	167								1404	≥ 64	4 1401 1402					14	04	

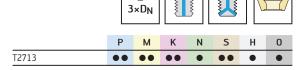
Пример: при использовании корпуса T2712-29-W32-3-09-2-36 и пластины типоразмера 09 радиусом 0,2 мм (0902 -> P26300-0902..) возможна обработка резьбы М36 или М39. Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы с мелким шагом 3 и 4 мм, если номинальный диаметр \geq 36 мм.

Резьба UN		UNC						UNF						UN						
																Ни	ток на	дюй	м	
Обозначение корпуса	l ₃ [мм]	7/8-9	1-8	1 1/4-7	1 1/2-6	2 1/4- 4.5	≥ 2 3/4-4	7/8-14	1-12	1 1/8- 12	1 1/4- 12	1 3/8- 12	1 1/2- 12	D _N	18-9	8	6	5	4,5	4
T2712-17-W16-3-06	53	0601						0601	0601	0601	0601	0601	0601	≥ 0,87"	0601					
T2712-19-W20-3-06	63		0602						0601	0601	0601	0601	0601	≥ 1,00"	0601	0602				
T2712-24-W25-3-09	79,5			0902						0901	0901	0901	0901	≥ 1,25"	0901	090)2			
T2712-29-W32-3-09	94,5				0902							0901	0901	≥ 1,50"	0901	090)2			
T2712-35-W32-3-11	110,5													≥ 1,75"	1101	110)2			
T2712-40-W40-3-14	127													≥ 2,00"	1401		1402			
T2712-44-W40-3-14	147					1404								≥ 2,25"	1401		1402		1404	
T2712-52-W40-4-14	167						1404							≥ 2,75"	1401		1402		140	04

Пример: при использовании корпуса T2712-29-W32-3-09 и пластины типоразмера 09 радиусом 0.2 мм (0902 -> P26300-0902..) возможна обработка резьбы UNC $11/2^{\circ}$. Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы UN с 8 и 6 TPI, если номинальный диаметр $\geq 1.5^{\circ}$.

Резьбофрезы со сменными пластинами

T2713 mm


- Универсальная резьбофреза со сменными пластинами
 Программируемый радиус: Walter GPS / Техническая информация

Инструмент	Обозначение	D _N [мм]	D _N [дюйм]	P _{max}	Р _{тах} Ниток на дюйм	D _c	I ₃	I ₁	d ₁ мм	Z	Кол-во пластин	Тип
Хвостовик по DIN 1835 B	★ T2713-17-W16-3-06	M 20	0.87"	2,50	9	16,5	63	118	16	3	3	P26300-06
	T2713-19-W20-3-06	M 24	1.00"	3,00	8	19	75	135	20	3	3	F20300-00
13	T2713-24-W25-3-09	M 30	1.25"	3,50	7	24	94,5	163	25	3	3	P263 . 0-09
0,	T2713-29-W32-3-09	M 36	1.50"	4,00	6	29	112,5	185	32	3	3	P26300-09
	T2713-35-W32-3-11	M 42	1.75"	4,50	6	35	131,5	202	32	3	3	P26300-11
	T2713-40-W40-3-14	M 48	2.00"	5,00	5	40	151	235	40	3	3	
	T2713-44-W40-3-14	M 56	2.25"	5,50	4,5	44	175	258	40	3	3	P263 . 0-14
	T2713-52-W40-4-14	M 64	2.75"	6,00	4	52	199	281	40	4	4	
Walter Capto™ no ISO 26623	T2713-60-C5-4-14	M 72	3.00"	6,00	4	60	115	152	50	4	4	P263 . 0-14
	T2713-73-C6-5-14	M 85	3.50"	6,00	4	73	125	170	63	5	5	P203 . U-14
13	T2713-94-C8-5-22	M 125	5.00"	10,00	3	94	140	199	80	5	5	P26300-22

Изменяемый подвод СОЖ: при обработке глухих отверстий необходимо удалить резьбовую заглушку из отверстия для подвода СОЖ с торцевой стороны Резьба G (BSP) представлена на отдельном развороте в каталоге новинок 2020. Сборочные детали входят в комплект поставки

Сборочные детали	D _c [мм]	16,5–19	24–29	35	40-73	94
	Винт пластины Момент затяжки	FS2147 (Torx 6IP) 0,6 Нм	FS2111 (Torx 7IP) 0,9 Нм	FS2061 (Torx 7IP) 0,9 Нм	FS1457 (Torx 9IP) 2,0 Нм	FS1495 (Torx 20IP) 5,0 HM
_	Винтовая заглушка отверстия для подвода СОЖ Момент затяжки	FS2147 (Torx 6IP) 0,6 Нм	FS2111 (Torx 7IP) 0,9 Нм	FS2061 (Torx 7IP) 0,9 Нм	FS1457 (Torx 9IP) 2,0 HM	FS1495 (Torx 20IP) 5,0 HM

Комплектующие	D _c [мм]	16,5–19	24–35	40-73	94
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4-1,2 Нм	FS2001 0,4-1,2 Нм	FS2003 1,5-5,0 Нм	FS2003 1,5-5,0 Нм
353	Рукоятка динамометрической отвёртки, цифровая Момент затяжки			FS2248 1,0-6,0 Нм	
	Вставка	FS2085 (Torx 6IP)	FS2011 (Torx 7IP)	FS2013 (Torx 9IP)	FS2015 (Torx 20IP)
	Отвёртка	FS2086 (Torx 6IP)	FS2088 (Torx 7IP)	FS1484 (Torx 9IP)	FS1486 (Torx 20IP)

Резьбонарезные фрезерные пластины Р26300

							Ä	Р	М	K	N	S	Н	0		
							кромок	НС	HC	НС	НС	HC	нс	НС		
	Обозначение	Размер	r MM	Шаг резьбы Р мм	Шаг резьбы Р Ниток на дюйм	I MM	Кол-во режущих в	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S	WSM37S		
,r	P26300-0601-D67	6	0,1	1,40-2,90	18-9	6,73	3						(3)			
	P26300-0602-D67	6	0,2	3,00-3,20	8	6,58	3									
	P26300-0901-D67	9	0,1	1,40-2,90	18-9	9,48	3					(3)				
	P26300-0902-D67	9	0,2	3,00-4,30	8-6	9,34	3									
	P26300-1102-D67	11	0,2	3,00-4,50	8-6	10,71	3					(3)				
	P26300-1401-D67	14	0,1	1,40-2,90	18-9	13,87	3									
	P26300-1402-D67	14	0,2	3,00-5,20	8-5	13,72	3					(3)	(3)			
	P26300-1404-D67	14	0,4	5,50-6,40	4,5-4	13,43	3									
_r	P26300-0601-D61	6	0,1	1,40-2,90	18-9	6,73	3	3	3	*	33	33				
	P26300-0602-D61	6	0,2	3,00-3,20	8	6,58	3	3	*	*	33	\$				
	P26300-0901-D61	9	0,1	1,40-2,90	18-9	9,48	3		3		33	33				
	P26300-0902-D61	9	0,2	3,00-4,30	8-6	9,34	3	33	*	*	33	33	3			
	P26300-1101-D61	11	0,1	1,40-2,90	18-9	10,85	3	33	33	*	33	33	3			
	P26300-1102-D61	11	0,2	3,00-4,50	8-6	10,71	3		3	*	33	33	3			
	P26300-1401-D61	14	0,1	1,40-2,90	18-9	13,87	3		3	*	33	33	3			
	P26300-1402-D61	14	0,2	3,00-5,20	8-5	13,72	3		3	*	33	33				
	P26300-1404-D61	14	0,4	5,50-6,40	4,5-4	13,43	3	33	*	*	*	33	3			
	P26300-2204-D61	22	0.4	5.50-10.00	4.5-4	21.41	3	盤	4	4	4	33	11			

НС = твёрдый сплав с покрытием

Выбор инструмента

Метрическая рез	вьба			Po	езьба с	крупнь	ым шаго	ОМ		Резьба с мелким шагом							А				
														P [мм]						
Обозначение корпуса	l ₃ [мм]	M20/ M22	M24/ M27	M30/ M33	M36/ M39	M42/ M45	M48/ M52	M56/ M59	M64/ M68	D _N [мм]	1,5- 2,5	3	3,5	4	4,5	5	5,5	6	7–10		
T2713-17-W16-3-06	63	0601								≥ 20	0601										
T2713-19-W20-3-06	75		0602							≥ 24	0601	0602									
T2713-24-W25-3-09	94,5			0902						≥ 30	0901	09	02								
T2713-29-W32-3-09	112,5				0902					≥ 36	0901		0902								
T2713-35-W32-3-11	131,5					1102				≥ 42	1101		11	02	•						
T2713-40-W40-3-14	151						1402			≥ 48	1401		14	02							
T2713-44-W40-3-14	175							1404		≥ 56	1401		14	02			1404				
T2713-52-W40-4-14	199								1404	≥ 64	1401		14	02			14	04			
T2713-60-C5-4-14	115									≥ 72	1401		14	02			14	04			
T2713-73-C6-5-14	125									≥ 85	1401		14	02			14	04			
T2713-94-C8-5-22	140									≥ 125								2204			

Пример: при использовании корпуса T2713-29-W32-3-09 и пластины типоразмера 09 радиусом 0,2 мм (0902 -> P26300-0902..) возможна обработка резьбы М36 или М39. Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы с мелким шагом 3 и 4 мм, если номинальный диаметр ≥ 36 мм.

Резьба UN						UNC					U	JNF		UN						
																Ни	ток на	к на дюйм		
Обозначение корпуса	I ₃ [мм]	7/8-9	1-8	1 1/4- 7	1 1/2 -6	2 1/4- 4,5	2 3/4- 4	≥ 3-4	≥3 1/2 -4	7/8-14	1-12	≥1 1/8 -12	≥1 3/8-12	D _N	18-9	8	6	5	4,5	4
T2713-17-W16-3-06	63	0601								0601	0601	0601	0601	≥ 0,87"	0601					
T2713-19-W20-3-06	75		0602								0601	0601	0601	≥ 1,00"	0601	0602				
T2713-24-W25-3-09	94,5			0902								0901	0901	≥ 1,25"	0901	09	02			
T2713-29-W32-3-09	112,5				0902								0901	≥ 1,50"	0901	09	02			
T2713-35-W32-3-11	131,5													≥ 1,75"	1101	11	02			
T2713-40-W40-3-14	151													≥ 2,00"	1401		1402			
T2713-44-W40-3-14	175					1404								≥ 2,25"	1401		1402		1404	
T2713-52-W40-4-14	199						1404	1404	1404					≥ 2,75"	1401		1402		14	04
T2713-60-C5-4-14	115							1404	1404					≥ 3,00"	1401		1402		14	04
T2713-73-C6-5-14	125								1404					≥ 3,50"	1401		1402		140	04
T2713-94-C8-5-22	140													≥5,00"					22	:04

Пример: при использовании корпуса T2713-29-W32-3-09 и пластины типоразмера 09 радиусом 0,2 мм (0902 -> P26300-0902..) возможна обработка резьбы UNC 1 1/2". Кроме того, эта комбинация корпуса/пластины подходит для обработки резьбы UN с 8 и 6 TPI, если номинальный диаметр \geq 1,5".

Режимы резания при раскатывании резьбы

В таблице указаны рекомендуемые значения. В особых случаях необходима корректировка скорости резания.

	= режимы резания для обработки с С	ж					Pac	катники быст	грорежущие Н	ISS-E-(PM)
Группа материалов	II E = эмульсия				F _m	, z			r-r, ¬	
риа	0 = масло			兕	Предел прочности Н/мм²	Группа обрабатываемости		C.r	токрытием	
мате	$\mathbf{v_c} = c$ корость резания			9 9 9 12	+od	IBae				
В				Дост	рел п 1 ²	бать			v _c [м/мин]	
톮	Основ	ные группы материалов		Твёрдость по Бринеллю НВ	Jpe/ T/MN/	-руп обра	<u>=</u>	1,5 × D _N	$2 \times D_N$	2,5 × D _N
_		C ≤ 0,25 %	отожжённая	125	430	P1	E	46	37	32
		C > 0,25 ≤ 0,55 %	отожженная	190	640	P2	E	47	38	33
		C > 0,25 ≤ 0,55 %	улучшенная	210	710	P3	E	29	23	20
	Нелегированная сталь	C > 0,55 %	отожжённая	190	640	P4	Е	29	23	20
		C > 0,55 %	улучшенная	300	1010	P5	Е	17	14	12
		автоматная сталь (сегментная стружка)	отожжённая	220	750	P6	Е	29	23	20
		отожжённая	1	175	590	P7	Е	47	38	33
Р		улучшенная		285	960	P8	Е	15	12	11
_	Низколегированная сталь	улучшенная		380	1280	P9				
		улучшенная		430	1480	P10				
	Высоколегированная сталь	отожжённая		200	680	P11	Е	29	23	20
	и высоколегированная инструментальная	закалённая и отпущенная		300	1010	P12	Е	17	14	12
	сталь	закалённая и отпущенная		380	1280	P13				
		ферритная / мартенситная, отожжённая		200	680	P14	ΕO	13	10	9
	Нержавеющая сталь	мартенситная, улучшенная		330	1110	P15	0	5	4	3
		аустенитная, закалённая		200	680	M1	ΕO	15	12	11
М	Нержавеющая сталь	аустенитная, дисперсионно-твердеющая (РН)	-	300	1010	M2	0	5	4	4
	' '	аустенитно-ферритная, дуплексная	-	230	780	М3	ΕO	5	4	4
		ферритный		200	400	K1				
	Ковкий литейный чугун	перлитный		260	700	K2				
	- V (-)	с низким пределом прочности		180	200	K3				
Κ	Серый чугун (СЧ)	с высоким пределом прочности / аустенитный		245	350	K4				
		ферритный		155	400	K5	Е	29	23	20
	Высокопрочный чугун	перлитный		265	700	K6	Е	14	12	10
	Вермикулярный чугун (ЧВГ)			230	400	K7	İ			
		не упрочняемые термической обработкой		30	-	N1	Е	56	45	39
	Алюминиевые ковкие сплавы	упрочняемые термической обработкой, упрочнё	нные	100	340	N2	E	52	43	37
		≤ 12 % Si, не упрочняемые термической обрабо	гкой	75	260	N3	Е	48	39	34
	Алюминиевые литейные сплавы	≤ 12 % Si, упрочняемые термической обработко	й, упрочнённые	90	310	N4	E	48	39	34
N		> 12 % Si, не упрочняемые термической обрабо	ткой	130	450	N5				
N	Магниевые сплавы			70	250	N6				
		нелегированная, электролитическая медь		100	340	N7	E	21	17	15
	Медь и медные сплавы	латунь, бронза, красная латунь		90	310	N8				
	(бронза/латунь)	медные сплавы, дающие сегментную стружку		110	380	N9				
		высокопрочные сплавы Cu-Al-Fe		300	1010	N10				
		на основе Fe	отожжённые	200	680	S1	Е	8	6	5
		TIG OCTION TO	упрочнённые	280	940	S2				
	Жаропрочные сплавы		отожжённые	250	840	S3	0	8	6	5
		на основе Ni или Co	упрочнённые	350	1180	S4				
S			литейные	320	1080	S5				
3		чистый титан		200	680	S6				
	Титановые сплавы	α- и β-сплавы, упрочнённые		375	1260	S7				
		β-сплавы		410	1400	S8				
	Вольфрамовые сплавы			300	1010	S9				
	Молибденовые сплавы			300	1010	S10				
		закалённая и отпущенная		50 HRC	-	H1				
н	Закалённая сталь	закалённая и отпущенная		55 HRC		H2				
		закалённая и отпущенная		60 HRC	-	H3				
	Закалённый чугун	закалённый и отпущенный		55 HRC	-	H4				
	Термопласты	без абразивных включений				01				
	Реактопласты	без абразивных включений				02				
0	Пластмассы, армированные стекловолокном	GFRP				03				
	Пластмассы, армированные углеволокном	CFRP				04				
	Пластмассы, армированные арамидным волокном	AFRP		80 по Шору		05				
	Графит (технический)					06				

B4

B 5

 $^{^1}$ Классификацию по группам обрабатываемости см. на стр. В 1174 в Общем каталоге Walter 2017. 3 При обработке магниевых сплавов не использовать смешиваемую с водой СОЖ. *При обработке материалов твёрдостью выше 63 HRC скорость резания следует уменьшить на 50–75 %.

Режимы резания для резьбофрез с пластинами

108	= режимы резания для обработки с CO. E = эмульсия	*			R _m	1		T2710 /	T2711 / T271	12 / T2713
та материалов	$m{M} =$ масляный туман $m{A} =$ сжатый воздух $m{v_c} =$ скорость резания [м/мин] $m{f_z} =$ подача на зуб [мм]	= сжатый воздух = скорость резания [м/мин]							f _z	[мм]
Группа	Основн	ые группы материалов		Твёрдость по Бринеллю НВ	Предел прочности Н/мм²	Группа обрабатываемости ¹	=======================================	v _c [м/мин]	Размер 06	пластины 09/11/14/22
		C ≤ 0,25 %	отожжённая	125	430	P1	EM	200	0,3	0,4
		C > 0,25 ≤ 0,55 %	отожжённая	190	640	P2	EM	200	0,3	0,4
	Нелегированная сталь	C > 0,25 ≤ 0,55 %	улучшенная	210	710	P3	EM	200	0,3	0,4
		C > 0,55 %	отожжённая	190	640	P4	EM	200	0,3	0,4
		C > 0,55 %	улучшенная	300	1010	P5	EM	200	0,3	0,4
		автоматная сталь (сегментная стружка)	отожжённая	220	750 590	P6 P7	EM	200	0,3	0,4
Р		отожжённая		175 285	960	P7 P8	E M	200	0,3	0,4
-	Низколегированная сталь	улучшенная		380	1280	P9	EM	150	0,3	0,4
		улучшенная		430	1480	P10	EM	100	0,23	0,33
		улучшенная отожжённая		200	680	P10	EM	200	0,2	0,3
	Высоколегированная сталь и высоколегированная инструментальная	закалённая и отпущенная		300	1010	P12	EM	200	0,3	0,4
	сталь	закалённая и отпущенная		380	1280	P13	EM	150	0,3	0,4
		ферритная / мартенситная, отожжённая		200	680	P13	EM	200	0,3	0,4
	Нержавеющая сталь	мартенситная, улучшенная		330	1110	P15	EM	150	0,25	0,35
		аустенитная, закалённая		200	680	M1	E	200	0,23	0,33
М	Нержавеющая сталь	аустенитная, дисперсионно-твердеющая (РН)		300	1010	M2	E	150	0,2	0.3
141	пермаровцал сталь	аустенитно-ферритная, дуплексная		230	780	M3	E	80	0,2	0,3
		ферритный		200	400	K1	ЕМ	200	0,3	0,4
	Ковкий литейный чугун	перлитный		260	700	K2	EM	200	0,3	0,4
		с низким пределом прочности		180	200	K3	ЕМ	250	0.3	0,4
Κ	Серый чугун (СЧ)	с высоким пределом прочности / аустенитный	 1	245	350	K4	EM	200	0,3	0,4
••		ферритный		155	400	K5	ЕМ	200	0.3	0.4
	Высокопрочный чугун	перлитный		265	700	K6	ЕМ	200	0,3	0,4
	Вермикулярный чугун (ЧВГ)			230	400	K7	EM	200	0,3	0,4
		не упрочняемые термической обработкой		30	-	N1	ЕМ	200	0,3	0,4
	Алюминиевые ковкие сплавы	упрочняемые термической обработкой, упрочн	нённые	100	340	N2	EM	200	0,3	0,4
		≤ 12 % Si, не упрочняемые термической обраб	откой	75	260	N3	ЕМ	200	0,3	0,4
	Алюминиевые литейные сплавы	≤ 12 % Si, упрочняемые, упрочнённые		90	310	N4	EM	200	0,3	0,4
М		> 12 % Si, не упрочняемые термической обраб	откой	130	450	N5	E M	200	0,3	0,4
N	Магниевые сплавы ³			70	250	N6	Α	250	0,3	0,4
		нелегированная, электролитическая медь		100	340	N7	E M	200	0,3	0,4
	Медь и медные сплавы	латунь, бронза, красная латунь		90	310	N8	EM	200	0,3	0,4
	(бронза/латунь)	медные сплавы, дающие сегментную стружку		110	380	N9	EM	200	0,3	0,4
		высокопрочные сплавы Cu-Al-Fe		300	1010	N10	EM	50	0,3	0,4
		на основе Fe	отожжённые	200	680	S1	E	40	0,25	0,25
			упрочнённые	280	940	S2	E	25	0,15	0,15
	Жаропрочные сплавы	Ni G	отожжённые	250	840	S3	E	40	0,25	0,25
		на основе Ni или Со	упрочнённые	350	1180	S4	E	25	0,15	0,15
S			литейные	320	1080	S5	E	30	0,2	0,2
	-	чистый титан		200	680	S6	E	40	0,25	0,25
	Титановые сплавы	α- и β-сплавы, упрочнённые		375	1260	S7	E	40	0,25	0,25
	D t	β-сплавы		410	1400	S8	E	30	0,2	0,2
	Вольфрамовые сплавы			300 300	1010	S9 S10	E	40 40	0,25 0,25	0,25 0,25
	Молибденовые сплавы	закадённая и отпушенная		50 HRC	-	H1		45	0,25	0,25
	Закалённая сталь	закалённая и отпущенная		55 HRC	_	H2	M A M	45	U,Z	U,3 -
Н	Sakanennan eranu	закалённая и отпущенная 5 закалённая и отпущенная 6			_	H3	M	_		_
	Закалённый чугун	закаленная и отпущенная 5				H4	M A	45	0,2	0,3
	Термопласты	закаленный и отпущенный без абразивных включений				01	EM	200	0,2	0,3
	Реактопласты	без абразивных включений без абразивных включений				02	EM	150	0,3	0,4
	Пластмассы, армированные стекловолокном	без абразивных включений GFRP				03	EM	50	0,3	0,4
0	Пластмассы, армированные стехноволокном					04	EM	50	0,3	0,4
	Пластмассы, армированные углеволокном Пластмассы, армированные арамидным волокном	CFRP M AFRP				05	EM	50	0,3	0,4
	Графит (технический)			80 по Шору		06	EM	200	0,3	0,4
	- pay (Textili lecturi)			1 эсто шору		- 00	_ IVI	200	0,3	0,4

 $^{^{1}}$ Классификацию по группам обрабатываемости см. на стр. В 1174 в Общем каталоге Walter 2017.

Обработка должна выполняться попутно. Указанные режимы резания являются целевыми значениями при хороших условиях обработки.

Способы устранения вибраций:

В3

B4

B 5

 $^{^{3}}$ При обработке магниевых сплавов не использовать смешиваемую с водой СОЖ.

[—] Использовать пластины с геометрией D61 — Уменьшить v_c на 25–50 % и/или увеличить f_z на 25–50 % — Радиальный проход

T2710 / T2711 / T2712: рекомендуется радиальный проход. T2713: может потребоваться радиальный проход.

Корректирующие значения радиуса для резьбофрезерования Walter T2710 / T2711 / T2712 / T2713

Метрическая резьба по DIN 13

Номинальный	→ P -	r	Кој	рректировка радиу	ca
диаметр резьбы D _N			Минимальное значение для допуска по Н	Середина поля допуска по 6Н	Середина поля допуска по 6G
[мм]	[мм]	[мм]	[MM]	[мм]	[мм]
	1,5	0,1	-0,05	-0,10	-0,12
	2	0,1	-0,10	-0,15	-0,17
	2,5	0,1	-0,15	-0,20	-0,22
	3	0,2	-0,10	-0,16	-0,19
	3,5	0,2	-0,15	-0,22	-0,24
	4	0,2	-0,20	-0,27	-0,30
≥ 20	4,5	0,2	-0,25	-0,33	-0,36
	5*	0,2	-0,30	-0,38	-0,42
	5*	0,4	-0,10	-0,18	-0,22
	5,5	0,4	-0,15	-0,24	-0,27
	6	0,4	-0,20	-0,29	-0,33
	8	0,4	-0,40	-0,51	-0,56
	10	0,4	-0,59	-0,71	-

На основании допусков для среднего диаметра по DIN ISO 965-1. Действительно для M20 и выше.

Резьба UN / UNC / UNF / UNEF по ASME B1.1

Номинальный	→ P -	r	Ко	рректировка радиу	rca
диаметр резьбы D _N			Минимальный размер	Середина поля допуска по 2B	Середина поля допуска по 3В
[дюйм]	[ниток на дюйм]	[MM]	[MM]	[мм]	[мм]
	18	0,1	-0,04	-0,08	-0,07
	16	0,1	-0,06	-0,10	-0,09
	14	0,1	-0,08	-0,12	-0,11
	12	0,1	-0,11	-0,16	-0,15
	9	0,1	-0,18	-0,23	-0,22
≥ 7/8"	8	0,2	-0,12	-0,17	-0,16
≥ // 0	7	0,2	-0,16	-0,22	-0,21
	6	0,2	-0,22	-0,29	-0,27
	5*	0,2	-0,31	-0,38	-0,36
	5**	0,4	-0,11	-0,18	-0,16
	4,5	0,4	-0,16	-0,24	-0,22
	4	0,4	-0,23	-0,32	-0,30

На основании допусков для среднего диаметра по ASME B1.1. Действительно для UNC 7/8 и выше.

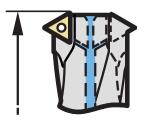
Трубная резьба G (BSP) по DIN EN ISO 228

Номинальный	- P	r	Корректиро	вка радиуса
диаметр резьбы D _N			Минимальный размер	Середина поля допуска
[дюйм]	[ниток на дюйм]	[MM]	[MM]	[MM]
≥ 1" и < 2 1/4"	11	0,2	-0,11	-0,16
≥ 2 1/4"	11	0,2	-0,11	-0,17

На основании допусков для среднего диаметра по DIN EN ISO 228. Относится к $D_N\ 1^{"}$.

Если уменьшить измеренный радиус инструмента на значение, указанное в столбце «Минимальный размер», резьба после обработки в большинстве случаев будет находиться в нижней части диапазона допуска и, следовательно, будет слишком тугой. При необходимости фрезерования резьбы с соблюдением середины поля допуска программируемый радиус инструмента следует уменьшить на значение, указанное в столбце «Середина поля допуска». После обработки резьба, как правило, будет соответствовать требуемому размеру. Корректирующие значения радиуса можно также найти в Walter GPS.

Пример для резьбы М36 с классом допуска 6Н	Р	4 мм
	r	0,2 мм
Измеренный радиус инструмента		14,53 мм
Корректировка радиуса, середина поля допуска по 6Н		- 0,27 мм
Требуемый радиус инструмента		= 14,26 мм

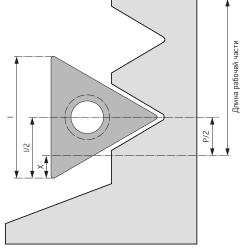

^{*} Внимание: для P = 5 мм рекомендуемый радиус пластины r = 0,2 мм! При выборе учитывайте значения корректировки радиуса.

^{*} Внимание: для P = 5 ниток на дюйм рекомендуемый радиус пластины r = 0,2 мм! При выборе учитывайте значения корректировки радиуса.

Применение инструмента Walter T2710 / T2711 / T2712 / T2713

ПРЕДВАРИТЕЛЬНАЯ НАСТРОЙКА ИНСТРУМЕНТА

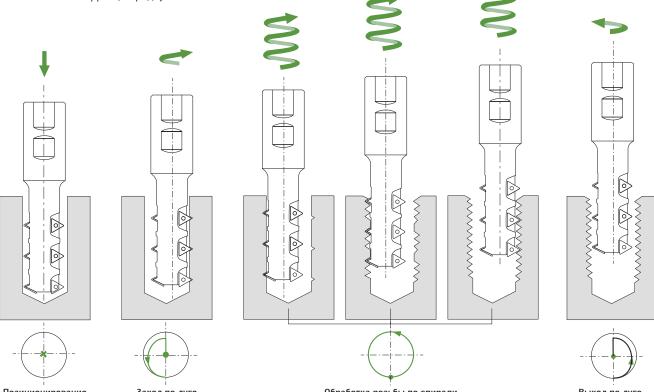
При генерировании программы ЧПУ с помощью Walter GPS следует выполнить предварительную настройку инструмента, как показано справа. После этого будет обеспечено соблюдение введённой глубины резьбы.


НЕИСПОЛЬЗУЕМАЯ ДЛИНА

К длине рабочей части также относится последняя резьбовая гребёнка плюс половина шага резьбы. Так как I/2 больше, чем P/2, то возникает «неиспользуемая длина» (X).

Она рассчитывается путём вычитания половины шага резьбы (Р/2) из половины длины пластины (1/2) и должна учитываться при программировании. При генерировании программ ЧПУ Walter GPS учитывает неиспользуемую длину.

Пример: М36 с резьбонарезной фрезерной пластиной Р26300-0902..


Неиспользуемая длина X = I/2 - P/2 =
$$\frac{9,34 \text{ мм}}{2} - \frac{4 \text{ мм}}{2} = 2,67 \text{ мм}$$

Неиспользуемая длина серии Т271.. меньше, чем длина заборного конуса метчика.

СТРАТЕГИЯ ОБРАБОТКИ

Для обработки резьбы рекомендуется выбирать радиальную стратегию и попутное фрезерование. Холостые проходы можно выполнять без коррекции радиуса.

Позиционирование фрезы над отверстием под резьбу и врезание

Обработка резьбы по спирали Заход по дуге до перекрывания ниток резьбы. обработанных разными рядами зубьев

Выход по дуге

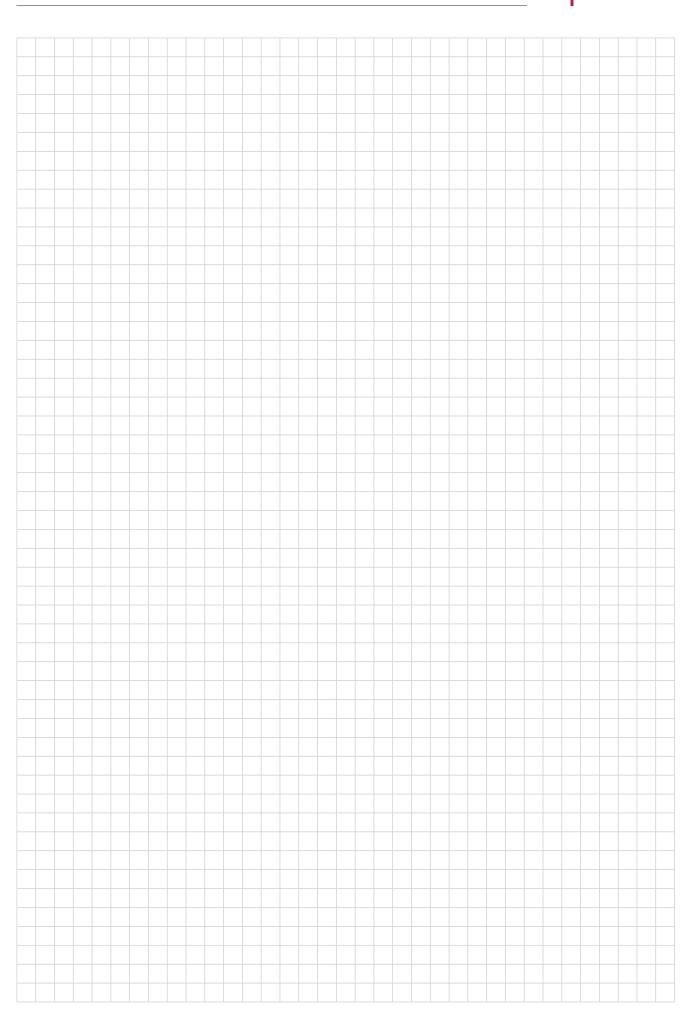
B3

Рекомендации по применению Регулируемый подвод СОЖ

Для обеспечения оптимального отвода стружки при обработке глухих отверстий необходимо удалить резьбовую заглушку из отверстия для подвода СОЖ.

При нарезании резьбы в сквозных отверстиях осевой канал СОЖ можно перекрыть. Тогда вся СОЖ пойдет по радиальному каналу, и стружка будет вымываться из отверстия вниз.

Винтовая заглушка отверстия для подвода СОЖ



В3

B4

B 5

В3

B4

В5

С — Фрезерование

Фрезы твердосплавные — С1

Фрезы твердосплавные	Обзор программы	162
	Система обозначений	163
	Фрезы для обработки уступов	165
	Фрезы для обработки уступов/пазов	168
	Фрезы параболические	170
Фрезы твердосплавные с хвостовиком ConeFit	Обзор программы	172
	Фрезы для обработки уступов	173
	Фрезы параболические	175
Техническая информация	Режимы резания	176
	Рекомендации по выбору подачи	180
	Рекомендации по применению параболических фрез	183

Фрезы с пластинами — С2

Пластины для фрезерования	Обзор программы	184	
	Пластины с задними углами	186	
	Пластины без задних углов	201	
	Пластины тангенциальные	210	
Фрезы с пластинами	Обзор программы	214	
	Система обозначений	215	
	Фрезы для обработки уступов	216	
	Фрезы для обработки пазов	224	
	Фрезы для профильной обработки	226	
	Фрезы для фасонной обработки	232	
Техническая информация	Режимы резания	236	
	Рекомендации по выбору подачи	239	
	Рекомендации по применению	240	
	Рекомендации по высокоскоростной обработке	242	

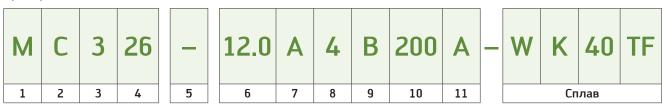
Обзор программы твердосплавных фрез

Фрезы для обработки уступов

Вид обработки			
Угол наклона винтовых канавок	50	0°	
Обозначение	MD128 Supreme	MC128 Advance	
Диапазон Ø [мм] / [дюйм]	6-25	2-25 / 1/4-3/4	
Z	6-8	4-8	
Радиус при вершине [мм]/[дюйм]	0-4	0-4 / 0-0,25	
Стр.	165	166	
	TIPETOTAL	oblition)	

Фрезы для обработки уступов/пазов

Вид обработки	<u> </u>	
Угол наклона винтовых канавок	4	0°
Обозначение	MD377 Supreme	MC377 Advance
Диапазон Ø [мм]	6–25	2–25
Z	5	3–4
Радиус при вершине [мм]	0,5-6,35	0,2-4
Стр.	168	169
	esister) i-	- Contraction


Фрезы параболические

Вид обработки		
Угол наклона винтовых канавок	30	D°
Обозначение	MD838 Supreme	MD839 Supreme
Диапазон Ø [мм]	6–16	6–16
Z	4-8	4
Радиус при вершине [мм]	0,5-4	1-4
Стр.	170	171
	CONTRACTOR INC.	DESCRIPTION OF THE PROPERTY OF

Система обозначений твердосплавных фрез

Пример:

			_	
	1	2		3
	Назначение инструмента	Серия		Тип инструмента
М	Milling (фрезерование)			 Фрезы торцовые быстроходные Фреза для обработки уступов / пазов / Длиннокромочная фреза угол наклона винтовых канавок ≤ 39° Фреза для обработки уступов / пазов / длиннокромочная фреза угол наклона винтовых канавок ≥ 40°
				 Фреза со сферическим концом / фреза для профильной обработки Фреза для фасонной обработки Фрезы для профильной обработки / обработки по винтовой интерполяции Фрезы конические / параболические

5	6		7
Разделительный знак	Режущий диаметр		Тип хвостовика
Метрические размерыДюймовые размеры		A E W	ConeFit

8	9	10	11
Число эффективных зубьев	Стандарт	Радиус при вершине	Исполнение
	A DIN 6527 K		A 13 XS
	B DIN 6527 L		B 13 S / 2×D _c *
	C ANSI-Stub		C 13 M / 3×D _c *
	D ANSI-Standard		D 13 L / 4 × D _c *
	L P-Norm L		E $13 \times 1.75 \times D_c$ *
	M P-Norm Mini		F 13 XXL / 6 × D _c *
	P P-Norm		G 13 XXXL / $8 \times D_c$ *
	S P-Norm S		\mathbf{H} 13 XXXXL / $10 \times D_c$ *
	X P-Norm XL		\mathbf{J} Lc S / $3 \times D_c^*$
			K Lc M / 4×D _c *
			$L Lc L/5 \times D_c*$
			V Коническая шейка α ≤ 3°
			W Коническая шейка α ≤ 6°
			X Коническая шейка α ≤ 12°
			D

00	Универсальный	Угол наклона винтовых канавок 0° , фреза для обработки фасок 60°
01	Универсальный	Угол наклона винтовых канавок 0°, фреза для обработки фасок 90°
02	Универсальный	Угол наклона винтовых канавок 0°, фреза для обработки фасок 120°
03	Универсальный	Угол наклона винтовых канавок 0°, фреза для обработки радиусных фасок
04	Универсальный	Угол наклона винтовых канавок 0°, фреза для обработки фасок
11	Универсальный	Угол наклона винтовых канавок 30°, тип N
12	Универсальный	Угол наклона винтовых канавок 30°, тип HSC
13	Универсальный	Угол наклона винтовых канавок 30°, тип HSC, средняя серия
16	Универсальный	Угол наклона винтовых канавок 30°, тип 30
19	Универсальный	Угол наклона винтовых канавок 40°, профиль Kordel, с внутренним подводом СОЖ
20	Универсальный	Угол наклона винтовых канавок 40°, профиль Kordel
21	Универсальный	Угол наклона винтовых канавок 45°, короткое исполнение
22	Универсальный	Угол наклона винтовых канавок 45°, тип N
24	Универсальный	Угол наклона винтовых канавок 45°, тип 45
25	Универсальный	Угол наклона винтовых канавок 50°, быстроходная фреза
26	Универсальный	Угол наклона винтовых канавок 50°, неравномерная глубина паза, неравномерный шаг
28	Универсальный	Угол наклона винтовых канавок 50°, тип N, многофункциональная фреза
29	Универсальный	Угол наклона винтовых канавок 60°, тип N, многофункциональная фреза
32	Универсальный	Угол наклона винтовых канавок 35°
33	Универсальный	Угол наклона винтовых канавок 35° + стружкоделитель
38	Универсальный	Угол наклона винтовых канавок 30°, коническая фреза
39	Универсальный	Угол наклона винтовых канавок 30°, тангенциальная фреза
41	ISO P	Угол наклона винтовых канавок 50°, HPC, неравномерный шаг
51	ISO M	Угол наклона винтовых канавок 35° / 38°, без внутреннего подвода СОЖ
65	ISO N	Угол наклона винтовых канавок 30°, геометрия AI, профиль RAPAX G30 для черновой обработки, с внутренним подводом COЖ по осевым каналам
66	ISO N	Угол наклона винтовых канавок 30°, геометрия AI, с внутренним подводом СОЖ по осевым каналам
77	ISO S	Угол наклона винтовых канавок 40°, титан
80	ISO H	Угол наклона винтовых канавок 30°, HSC, тип H = угол наклона винтовых канавок 30°, HSC, тип H
81	ISO H	Угол наклона винтовых канавок 30°, Mini HSC T, тип H = угол наклона винтовых канавок 30°, Mini HSC T, тип H
82	ISO H	Угол наклона винтовых канавок 30°, Mini HSC R, тип H = угол наклона винтовых канавок 30°, Mini HSC R, тип H
83	ISO H	Угол наклона винтовых канавок 30°, Multi Flute, тип H = угол наклона винтовых канавок 30°, Multi Flute, тип H
87	ISO H	Угол наклона винтовых канавок 50°, Multi Flute, тип H = угол наклона винтовых канавок 50°, Multi Flute, тип H
88	ISO H	Угол наклона винтовых канавок 50°, HPC, тип H = угол наклона винтовых канавок 50°, HPC, тип H
89	ISO H	Угол наклона винтовых канавок 50°, High Feed, тип H = угол наклона винтовых канавок 50°, High Feed, тип H

Тип инструмента

^{*}Рекомендуемые значения

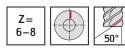
Система обозначений сплавов твердосплавного инструмента

Пример:

W	K	40	TF
Walter	1	2	3

1	
Субс	трат
	В
Гвёрдый сплав	J
	K

	2			
	Область применения			
	Износостойкость			
5				
10				
15				
20				
25				
30				
35				
40				
45				
50				
		Прочность		


	3
	Покрытие
TF	TIAIN
UU	Без покрытия
CA	CrN
RC	TiAIN + AITi
TZ	AlTiN + ZrN
ED	AICRN
TG	TiAlSiN
RD	AlTiN + ZrN
RA	TiAIN + TiAI
EA	ACN

Фрезы твердосплавные для обработки уступов MD128 Supreme mm

	Р	М	K	N	S	Н	0
WJ30RA		••			••		
WJ30RD	••		•				

PWZ-NORM	Обозначение	D _c h10 мм	L _c	I ₁ мм	l ₄	d ₁ h6 мм	Z	WJ30RA	WJ30RD
Хвостовик по DIN 6535 НА	MD128-06.0A6LJ-	6	18	65	29	6	6	•	(49
Do Allanda	MD128-08.0A6LJ-	8	24	68	32	8	6	3	49
	MD128-10.0A6LJ-	10	30	80	40	10	6	3	(29)
1	MD128-12.0A6LJ-	12	36	93	48	12	6	3	(29)
	MD128-16.0A6LJ-	16	48	115	67	16	6	3	(29)
14 11	MD128-20.0A8LJ-	20	60	125	75	20	8	3	(29)
	MD128-25.0A8LJ-	25	75	150	94	25	8	3	(4)

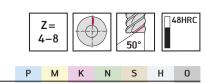
Пример заказа инструмента из сплава WJ30RA: MD128-06.0A6LJ-WJ30RA

PWZ-NORM	Обозначение	D _c h9 мм	R MM	L _c	I ₁	l ₄ мм	d ₁ h6 мм	Z	WJ30RA	WJ30RD
Хвостовик по DIN 6535 НА	MD128-06.0A6L050J-	6	0,5	18	65	29	6	6	•	49
R	MD128-08.0A6L050J-	8	0,5	24	68	32	8	6	•	49
+\$	MD128-10.0A6L050J-	10	0,5	30	80	40	10	6	•	(4)
D _C d ₁	MD128-10.0A6L100J-	10	1	30	80	40	10	6	•	69
	MD128-12.0A6L050J-	12	0,5	36	93	48	12	6	•	(4)
4 1 ₄	MD128-12.0A6L100J-	12	1	36	93	48	12	6	•	(4)
- I ₁ →	MD128-12.0A6L200J-	12	2	36	93	48	12	6	3	49
	MD128-16.0A6L050J-	16	0,5	48	115	67	16	6	•	49
	MD128-16.0A6L100J-	16	1	48	115	67	16	6	•	49
	MD128-16.0A6L200J-	16	2	48	115	67	16	6	•	(4)
	MD128-20.0A8L100J-	20	1	60	125	75	20	8	•	49
	MD128-20.0A8L400J-	20	4	60	125	75	20	8	•	(4)
	MD128-25.0A8L100J-	25	1	75	150	94	25	8	•	49
	MD128-25.0A8L400J-	25	4	75	150	94	25	8	®	(2)

Пример заказа инструмента из сплава WJ30RA: MD128-06.0A6L050J-WJ30RA

Фрезы твердосплавные для обработки уступов

MC128 Advance mm / MC128 Advance inch



DIN 6527 L	Обозначение	D _c h10 мм	L _c	I ₁ мм	1 ₄	d ₁ h6 мм	Z	WJ30TF
Хвостовик по DIN 6535 HA	MC128-02.0A4B-	2	7	57	21	6	4	49
1	MC128-03.0A4B-	3	8	57	21	6	4	49
D_{c}	MC128-04.0A4B-	4	11	57	21	6	4	(2)
	MC128-05.0A5B-	5	13	57	21	6	5	(4)
'	MC128-06.0A6B-	6	13	57	21	6	6	69
14 11	MC128-08.0A6B-	8	19	63	27	8	6	49
	MC128-10.0A6B-	10	22	72	32	10	6	49
	MC128-12.0A6B-	12	26	83	38	12	6	49
	MC128-16.0A6B-	16	32	92	44	16	6	(4)
	MC128-20.0A8B-	20	38	104	54	20	8	49
	MC128-25.0A8B-	25	45	121	65	25	8	49

WJ30TF

Пример заказа инструмента из сплава WJ30TF: MC128-02.0A4B-WJ30TF

DIN 6527 L	Обозначение	D _c h9 мм	R MM	L _c	I ₁	I ₄	d ₁ h6 мм	Z	WJ30TF
Хвостовик по DIN 6535 HA	MC128-06.0A6B050-	6	0,5	13	57	21	6	6	49
R	MC128-08.0A6B050-	8	0,5	19	63	27	8	6	69
+3	MC128-08.0A6B100-	8	1	19	63	27	8	6	(29)
D _c d ₁	MC128-10.0A6B050-	10	0,5	22	72	32	10	6	69
+ +	MC128-10.0A6B100-	10	1	22	72	32	10	6	69
	MC128-10.0A6B200-	10	2	22	72	32	10	6	(29)
	MC128-12.0A6B050-	12	0,5	26	83	38	12	6	(2)
	MC128-12.0A6B100-	12	1	26	83	38	12	6	69
	MC128-12.0A6B200-	12	2	26	83	38	12	6	(29)
	MC128-12.0A6B300-	12	3	26	83	38	12	6	69
	MC128-16.0A6B050-	16	0,5	32	92	44	16	6	(29)
	MC128-16.0A6B100-	16	1	32	92	44	16	6	69
	MC128-16.0A6B200-	16	2	32	92	44	16	6	(29)
	MC128-16.0A6B300-	16	3	32	92	44	16	6	69
	MC128-20.0A8B100-	20	1	38	104	54	20	8	(29
	MC128-20.0A8B200-	20	2	38	104	54	20	8	69
	MC128-20.0A8B300-	20	3	38	104	54	20	8	69
	MC128-20.0A8B400-	20	4	38	104	54	20	8	69

Пример заказа инструмента из сплава WJ30TF: MC128-06.0A6B050-WJ30TF

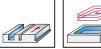
Продолжение

Продолжение

STANDARD	Обозначение	D _c h10 дюйм/№	L _c дюйм	I ₁ дюйм	l ₄ дюйм	d ₁ h6 дюйм	Z	WJ30TF
Хвостовик по DIN 6535 НА	MC128.6.35A6C-	1/4"	0,500	2,500	1,083	0,250	6	49
D _c d ₁	MC128.9.53A6C-	3/8"	0,500	2,500	0,937	0,375	6	(3)
	MC128.9.53A6D-	3/8"	1,000	3,000	1,437	0,375	6	(29)
1	MC128.12.7A6DI-	1/2"	1,000	3,500	1,717	0,500	6	69
Do Aller	MC128.12.7A6D-	1/2"	1,250	3,500	1,717	0,500	6	69
50	MC128.15.9A6DI-	5/8"	1,250	4,000	2,094	0,625	6	(49)
[†] ← L _C →	MC128.15.9A6D-	5/8"	1,625	4,000	2,094	0,625	6	69
14 — I ₁ — — — — — — — — — — — — — — — — — — —	MC128.19.1A8D-	3/4"	1,625	4,500	2,469	0,750	8	49
Хвостовик по DIN 6535 HA	MC128.6.35A6L-	1/4"	1,000	3,000	1,583	0,250	6	(2)
	MC128.19.1A8L-	3/4"	2,250	5,000	2,969	0,750	8	69
D _c d ₁								

Пример заказа инструмента из сплава WJ30TF: MC128.6.35A6C-WJ30TF

STANDARD	Обозначение	D _c h9 дюйм/№	R дюйм	L _c дюйм	l ₁ дюйм	l ₄ дюйм	d ₁ h6 дюйм	Z	WJ30TF
Хвостовик по DIN 6535 НА	MC128.6.35A6D038-	1/4"	0,015	0,625	2,500	1,083	0,250	6	49
R	MC128.6.35A6D076-	1/4"	0,030	0,625	2,500	1,083	0,250	6	(4)
Dc d1	MC128.9.53A6D038-	3/8"	0,015	1,000	3,000	1,437	0,375	6	49
	MC128.9.53A6D076-	3/8"	0,030	1,000	3,000	1,437	0,375	6	49
	MC128.12.7A6D076-	1/2"	0,030	1,250	3,500	1,717	0,500	6	(4)
4 14	MC128.12.7A6D152-	1/2"	0,060	1,250	3,500	1,717	0,500	6	(29)
	MC128.12.7A6D228-	1/2"	0,090	1,250	3,500	1,717	0,500	6	49
	MC128.12.7A6D318-	1/2"	0,125	1,250	3,500	1,717	0,500	6	49
	MC128.15.9A6D076-	5/8"	0,030	1,625	4,000	2,094	0,625	6	49
	MC128.15.9A6D152-	5/8"	0,060	1,625	4,000	2,094	0,625	6	(4)
	MC128.19.1A8D076-	3/4"	0,030	1,750	4,500	2,469	0,750	8	(4)
	MC128.19.1A8D318-	3/4"	0,125	1,750	4,500	2,469	0,750	8	49
	MC128.19.1A8D635-	3/4"	0,250	1,750	4,500	2,469	0,750	8	(2)


Пример заказа инструмента из сплава WJ30TF: MC128.6.35A6D038-WJ30TF

Фрезы твердосплавные для обработки уступов/пазов

MD377 Supreme mm

- Большой вылет Тип HPC Ti40

							70
	Р	М	K	N	S	Н	0
WK40TZ		•			••		

DIN 6527 L	Обозначение	D _c h9 мм	R MM	L _c	l ₃	d ₂	I ₁	I ₄	d ₁ h5 мм	Z	WK40TZ
Хвостовик по DIN 6535 HA	MD377-06.0A5B050C-	6	0,5	13	19	5,7	57	21	6	5	49
	MD377-06.0A5B100C-	6	1	13	19	5,7	57	21	6	5	(4)
R d ₂	MD377-08.0A5B050C-	8	0,5	19	25	7,6	63	27	8	5	(4)
D_c	MD377-08.0A5B100C-	8	1	19	25	7,6	63	27	8	5	(4)
4	MD377-10.0A5B050C-	10	0,5	22	30	9,5	72	32	10	5	49
12	MD377-10.0A5B100C-	10	1	22	30	9,5	72	32	10	5	(4)
	MD377-12.0A5B050C-	12	0,5	26	36	11,4	83	38	12	5	(4)
	MD377-12.0A5B100C-	12	1	26	36	11,4	83	38	12	5	(4)
	MD377-12.0A5B200C-	12	2	26	36	11,4	83	38	12	5	(4)
	MD377-12.0A5B300C-	12	3	26	36	11,4	83	38	12	5	(3)
	MD377-16.0A5B300C-	16	3	32	42	15,2	92	44	16	5	(4)
	MD377-16.0A5B400C-	16	4	32	42	15,2	92	44	16	5	(3)
	MD377-20.0A5B300C-	20	3	38	52	19	104	54	20	5	(4)
	MD377-20.0A5B400C-	20	4	38	52	19	104	54	20	5	(4)
	MD377-25.0A5B300C-	25	3	45	63	23,75	121	65	25	5	
	MD377-25.0A5B400C-	25	4	45	63	23,75	121	65	25	5	(4)
	MD377-25.0A5B635C-	25	6,35	45	63	23,75	121	65	25	5	(4)
Хвостовик по DIN 6535 HB	MD377-16.0W5B300C-	16	3	32	42	15,2	92	44	16	5	(4)
n 4	MD377-16.0W5B400C-	16	4	32	42	15,2	92	44	16	5	
R d ₂	MD377-20.0W5B300C-	20	3	38	52	19	104	54	20	5	(4)
D_c	MD377-20.0W5B400C-	20	4	38	52	19	104	54	20	5	(4)
4 - 4	MD377-25.0W5B300C-	25	3	45	63	23,75	121	65	25	5	(4)
	MD377-25.0W5B400C-	25	4	45	63	23,75	121	65	25	5	(4)
											

Пример заказа инструмента из сплава WK40TZ: MD377-06.0A5B050C-WK40TZ

C 1

Фрезы твердосплавные для обработки уступов/пазов MC377 Advance mm

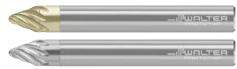
				النــــــــــــــــــــــــــــــــــــ	$\overline{\psi}$		40°
	Р	М	K	N	S	Н	0
WK40EA	•	•			••		

DIN 6527 L	Обозначение	D _с h9 мм	L _c	l ₃	d ₂ мм	I ₁	I ₄ мм	d ₁ h5 мм	Z	WK40EA
Хвостовик по DIN 6535 НА	MC377-02.0A3BC-	2	6	10	1,9	57	21	6	3	(4)
al .	MC377-03.0A4BC-	3	8	10	2,9	57	21	6	4	69
d ₂	MC377-04.0A4BC-	4	11	15	3,8	57	21	6	4	69
D_c	MC377-05.0A4BC-	5	13	16	4,8	57	21	6	4	69
A	MC377-06.0A4BC-	6	13	19	5,7	57	21	6	4	69
	MC377-08.0A4BC-	8	19	25	7,6	63	27	8	4	69
14	MC377-10.0A4BC-	10	22	30	9,5	72	32	10	4	69
	MC377-12.0A4BC-	12	26	36	11,4	83	38	12	4	49

Пример заказа инструмента из сплава WK40EA: MC377-02.0A3BC-WK40EA

DIN 6527 L	Обозначение	D _c h9	R MM	L _c	l ₃	d ₂	I ₁ мм	I ₄	d ₁ h5 мм	Z	WK40EA
Хвостовик по DIN 6535 НА	MC377-02.0A3B020C-	2	0,2	6	10	1,92	57	21	6	3	49
R d ₂	MC377-03.0A4B030C-	3	0,3	8	10	2,9	57	21	6	4	49
1 1	MC377-04.0A4B050C-	4	0,5	11	15	3,8	57	21	6	4	(4)
D_c	MC377-05.0A4B050C-	5	0,5	13	16	4,75	57	21	6	4	(4)
4	MC377-06.0A4B050C-	6	0,5	13	19	5,7	57	21	6	4	(4)
2 2	MC377-06.0A4B080C-	6	0,8	13	19	5,7	57	21	6	4	(2)
14-	MC377-06.0A4B100C-	6	1	13	19	5,7	57	21	6	4	49
	MC377-08.0A4B050C-	8	0,5	19	25	7,6	63	27	8	4	(4)
	MC377-08.0A4B100C-	8	1	19	25	7,6	63	27	8	4	(29)
	MC377-10.0A4B050C-	10	0,5	22	30	9,5	72	32	10	4	(4)
	MC377-10.0A4B100C-	10	1	22	30	9,5	72	32	10	4	(4)
	MC377-12.0A4B050C-	12	0,5	26	36	11,4	83	38	12	4	(4)
	MC377-12.0A4B100C-	12	1	26	36	11,4	83	38	12	4	(4)
	MC377-12.0A4B200C-	12	2	26	36	11,4	83	38	12	4	(3)
	MC377-12.0A4B300C-	12	3	26	36	11,4	83	38	12	4	69
	MC377-16.0A4B100C-	16	1	32	42	15,2	92	44	16	4	(4)
	MC377-16.0A4B300C-	16	3	32	42	15,2	92	44	16	4	(4)
	MC377-16.0A4B400C-	16	4	32	42	15,2	92	44	16	4	(3)
	MC377-20.0A4B300C-	20	3	38	52	19	104	54	20	4	(29)
	MC377-20.0A4B400C-	20	4	38	52	19	104	54	20	4	(29)
	MC377-25.0A4B300C-	25	3	45	63	23,75	121	65	25	4	(3)
	MC377-25.0A4B400C-	25	4	45	63	23,75	121	65	25	4	69
Хвостовик по DIN 6535 HB	MC377-16.0W4B300C-	16	3	32	42	15,2	92	44	16	4	(3)
_	MC377-16.0W4B400C-	16	4	32	42	15,2	92	44	16	4	(3)
R d ₂	MC377-20.0W4B300C-	20	3	38	52	19	104	54	20	4	(29)
D_c	MC377-20.0W4B400C-	20	4	38	52	19	104	54	20	4	69
1	MC377-25.0W4B300C-	25	3	45	63	23,75	121	65	25	4	(3)
L _C	MC377-25.0W4B400C-	25	4	45	63	23,75	121	65	25	4	69
11											<u></u>

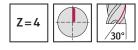
Пример заказа инструмента из сплава WK40EA: MC377-02.0A3B020C-WK40EA



Фрезы параболические твердосплавные MD838 Supreme mm

	Р	М	K	N	S	Н	0
WJ30RA		••		•	••		
WJ30RD	••		•				

PWZ-NORM	Обозначение	α/2	D _а мм	R MM	R _w	R ₃	L _c	I ₁	d ₁ h5 мм	Z	WJ30RA	WJ30RD
Хвостовик по DIN 6535 НА	MD838-06A4P050250-	20°	6	0,5	250	3	7,79	65	6	4	3	
R _W R ₃	MD838-06A4P100250-	20°	6	1	250	3	6,83	65	6	4	3	
γ κ ₃ α/2	MD838-08A4P050300-	20°	8	0,5	300	3	10,55	80	8	4	3	
Da d1	MD838-08A4P100300-	20°	8	1	300	3	9,57	80	8	4	3	
	MD838-10A4P200400-	20°	10	2	400	3	10,42	90	10	4	3	
	MD838-10A8P200400-	20°	10	2	400	3	10,42	90	10	8	3	
	MD838-12A4P200500-	20°	12	2	500	3	13,15	100	12	4	3	
	MD838-12A8P200500-	20°	12	2	500	3	13,15	100	12	8	3	
	MD838-12A4P300500-	20°	12	3	500	3	11,23	100	12	4	•	
	MD838-12A8P300500-	20°	12	3	500	3	11,23	100	12	8	•	
	MD838-16A4P301000-	20°	16	3	1000	5	17,07	115	16	4	3	
	MD838-16A4P401000-	20°	16	4	1000	5	15,17	115	16	4	•	(2)


Пример заказа инструмента из сплава WJ30RD: MD838-06A4P050250-WJ30RD

Фрезы параболические твердосплавные MD839 Supreme mm

	Р	М	K	N	S	Н	0
WJ30RA		••		•	••		
WJ30RD	••		•				

PWZ-NORM	Обозначение	D _а мм	R MM	R _w	L _c	I ₁ мм	d ₁ h5 мм	Z	WJ30RA	WJ30RD
Хвостовик по DIN 6535 НА	MD839-06A4P10100-	6	1	100	20,8	65	6	4	3	(4)
R _W	MD839-08A4P15100-	8	1,5	100	23,55	80	8	4	•	69
	MD839-10A4P20100-	10	2	100	26,06	90	10	4	•	(29
	MD839-12A4P20100-	12	2	100	29,71	100	12	4	3	(29)
†R 100	MD839-12A4P30100-	12	3	100	26,94	100	12	4	3	(29)
LC—	MD839-16A4P30100-	16	3	100	33,74	115	16	4	3	(29)
	MD839-16A4P40100-	16	4	100	31,42	115	16	4	3	

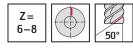
Пример заказа инструмента из сплава WJ30RD: MD839-06A4P10100-WJ30RD

Обзор программы твердосплавных фрез с хвостовиком ConeFit Фрезы для обработки уступов

Вид обработки									
Угол наклона винтовых канавок	51	D°							
Обозначение	MD128	MC128							
Диапазон Ø [мм]	10-25	10-25							
Z	6-8	6-8							
Радиус при вершине [мм]	0-4	0-4							
Стр.	173	174							

Обзор программы твердосплавных фрез с хвостовиком ConeFit Фрезы параболические

Вид обработки	
Угол наклона винтовых канавок	30°
Обозначение	MD838
Диапазон Ø [мм]	16
Z	8
Радиус при вершине [мм]	2–4
Стр.	175



Фрезы твердосплавные для обработки уступов MD128 mm

	Р	М	K	N	S	Н	0
WJ30RA		••			••		
WJ30RD	••		•				

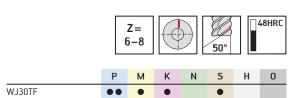
PWZ-NORM	Обозначение	D _c h10 мм	L _c	d ₂	I ₁	I ₄ мм	SW MM	d ₁ мм	Z	WJ30RA	WJ30RD
ConeFit	MD128-10.0E6X-	10	15	9,7	33,1	21,9	8	E10	6	•	(4)
SW d ₁	MD128-12.0E6X-	12	18	11,7	39,8	26	10	E12	6	•	(4)
SW d ₁	MD128-16.0E6X-	16	24	15,5	51,2	34,2	12	E16	6	•	(4)
L _c	MD128-20.0E8X-	20	30	19,3	59,8	40,3	16	E20	8	•	
	MD128-25.0E8X-	25	37,5	24,2	73,6	49,8	20	E25	8	3	(2)
ConeFit											

Пример заказа инструмента из сплава WJ30RA: MD128-10.0E6X-WJ30RA

PWZ-NORM	Обозначение	D _c h9 мм	R MM	L _c	d ₂ мм	l ₁	l ₄	SW MM	d ₁	Z	WJ30RA	WJ30RD
ConeFit	MD128-10.0E6X050-	10	0,5	15	9,7	33,1	21,9	8	E10	6	3	
R SW d ₁	MD128-10.0E6X100-	10	1	15	9,7	33,1	21,9	8	E10	6	3	(4)
R SW d ₁	MD128-12.0E6X050-	12	0,5	18	11,7	39,8	26	10	E12	6	3	
The same	MD128-12.0E6X100-	12	1	18	11,7	39,8	26	10	E12	6	•	49
Dc 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MD128-12.0E6X200-	12	2	18	11,7	39,8	26	10	E12	6	•	49
	MD128-16.0E6X050-	16	0,5	24	15,5	51,2	34,2	12	E16	6	3	
L _c d _c	MD128-16.0E6X100-	16	1	24	15,5	51,2	34,2	12	E16	6	3	(4)
I ₄	MD128-16.0E6X200-	16	2	24	15,5	51,2	34,2	12	E16	6	3	
	MD128-20.0E8X100-	20	1	30	19,3	59,8	40,3	16	E20	8	•	49
	MD128-20.0E8X400-	20	4	30	19,3	59,8	40,3	16	E20	8	®	(4)
ConeFit	MD128-25.0E8X100-	25	1	37,5	24,2	73,6	49,8	20	E25	8	3	(1)
	MD128-25.0E8X400-	25	4	37,5	24,2	73,6	49,8	20	E25	8	®	(1)

Пример заказа инструмента из сплава WJ30RA: MD128-10.0E6X050-WJ30RA

Фрезы твердосплавные для обработки уступов MC128 mm



PWZ-NORM	Обозначение	D _c h10 мм	L _c	d ₂	I ₁	l ₄	SW MM	d ₁ мм	Z	WJ30TF
ConeFit	MC128-10.0E6P-	10	5,5	9,7	23,6	12,4	8	E10	6	69
SW d ₁	MC128-12.0E6P-	12	6,5	11,7	28,3	14,5	10	E12	6	49
SW d₁ ↓ /	MC128-16.0E6P-	16	8,5	15,5	35,7	18,7	12	E16	6	(29
Dc	MC128-20.0E8P-	20	11	19,3	40,8	21,3	16	E20	8	(29
	MC128-25.0E8P-	25	13,5	24,2	49,6	25,6	20	E25	8	(4)
L _c d ₂										
ConeFit										

Пример заказа инструмента из сплава WJ30TF: MC128-10.0E6P-WJ30TF

PWZ-NORM	Обозначение	D _c h9 мм	R MM	L _c	d ₂	I ₁	l ₄	SW MM	d ₁ мм	Z	WJ30TF
ConeFit	MC128-10.0E6P050-	10	0,5	5,5	9,7	23,6	12,4	8	E10	6	49
R SW d ₁	MC128-10.0E6P100-	10	1	5,5	9,7	23,6	12,4	8	E10	6	
R SW d_1	MC128-12.0E6P050-	12	0,5	6,5	11,7	28,3	14,5	10	E12	6	
	MC128-12.0E6P100-	12	1	6,5	11,7	28,3	14,5	10	E12	6	(2)
	MC128-12.0E6P150-	12	1,5	6,5	11,7	28,3	14,5	10	E12	6	
	MC128-12.0E6P200-	12	2	6,5	11,7	28,3	14,5	10	E12	6	
-Lc - do	MC128-16.0E6P050-	16	0,5	8,5	15,5	35,7	18,7	12	E16	6	
	MC128-16.0E6P100-	16	1	8,5	15,5	35,7	18,7	12	E16	6	(4)
d ₂	MC128-16.0E6P150-	16	1,5	8,5	15,5	35,7	18,7	12	E16	6	(4)
1	MC128-16.0E6P200-	16	2	8,5	15,5	35,7	18,7	12	E16	6	(3)
ConeFit	MC128-20.0E8P100-	20	1	11	19,3	40,8	21,3	16	E20	8	(4)
	MC128-20.0E8P200-	20	2	11	19,3	40,8	21,3	16	E20	8	(4)
	MC128-20.0E8P400-	20	4	11	19,3	40,8	21,3	16	E20	8	(4)
	MC128-25.0E8P100-	25	1	13,5	24,2	49,6	25,6	20	E25	8	(3)
	MC128-25.0E8P200-	25	2	13,5	24,2	49,6	25,6	20	E25	8	(2)
	MC128-25.0E8P400-	25	4	13,5	24,2	49,6	25,6	20	E25	8	(3)

Пример заказа инструмента из сплава WJ30TF: MC128-10.0E6P050-WJ30TF

Фрезы параболические твердосплавные MD838 mm

– Конические

	Р	М	K	N	S	Н	0
WJ30RA		••		•	••		
WJ30RD	••		•				

PWZ-NORM	Обозначение	α/2	D _а мм	R MM	R _w	R ₃	L _c	I ₄	I ₁	SW MM	d ₁ мм	Z	WJ30RA	WJ30RD
ConeFit	MD838-16E8P201000-	20°	16	2	1000	5	18,99	34,2	51,2	12	E16	8	•	
D D =/0 CW -1	MD838-16E8P301000-	20°	16	3	1000	5	17,07	34,2	51,2	12	E16	8	•	
Rw R ₃ $\alpha/2$ SW d ₁	MD838-16E8P401000-	20°	16	4	1000	5	15,17	34,2	51,2	12	E16	8	•	
Da														
I ₁														

Пример заказа инструмента из сплава WJ30RD: MD838-16E8P201000-WJ30RD

Режимы резания для обработки уступов/пазов твердосплавными фрезами

					Серия инстру	ментов	λ			
							MD128 Supre			1
									50°	
							MD128 ConeF	it		
								Ø 6-25 мм		
						Z				
_			Твёрдость по Бринеллю НВ	_	Группа обрабатываемости ¹		Z = 6-8			
Группа материалов				He-	Предел прочности R _m H/мм²	Baek		WJ30RD		
риа				Бри	DOCT	aTbig	Have			
ате	Ocuen			은	0 T	pag	пачал	іьная скорость рі v _c [м/мин]	езания	
ø ≅	OCHOB	ные группы материалов		SCTE	<u></u>	90 6	9.	-	£ 2 D	
E) 	3 *	CD _C	$f_z 3 \times D_c$	
ď				TBé	무	Ē	PHIS [°]	VC	[мм] на зуб	
		C ≤ 0,25 %	отожжённая	125	428	P1	40	225	0,10	
		C > 0,25 ≤ 0,55 %	отожжённая	190	639	P2	40	355	0,10	
	Нелегированная сталь	C > 0,25 ≤ 0,55 %	улучшенная	210	708	P3	40	355	0,10	
	The state of the s	C > 0,55 %	отожжённая	190	639	P4	40	300	0,10	
		C > 0,55 %	улучшенная	300	1013	P5	40	215	0,09	
		автоматная сталь (сегментная стружка) отожжённая	отожжённая	220 175	745 591	P6 P7	40 40	300 300	0,10 0,10	
Р		улучшенная		300	1013	P7 P8	35	220	0,10	
•	Низколегированная сталь	улучшенная	380	1282	P9	40	180	0,08		
		улучшенная	430	1477	P10	35	160	0,12		
	Высоколегированная сталь	отожжённая	200	675	P11	35	310	0,09		
	и высоколегированная инструментальная	закалённая и отпущенная	300	1013	P12	30	240	0,11		
	сталь	закалённая и отпущенная		400 200	1361 675	P13	30	195	0,10	
	Нержавеющая сталь ферритная / мартенситная, отожжённая					P14				
		мартенситная, улучшенная		330 200	1114 675	P15 M1				
М	аустенитная, закалённая Нержавеющая сталь аустенитная, дисперсионно-твердеющая (РН)				1013	M2				
141	аустенитная, дисперсионно-твердеющая (РП) аустенитно-ферритная, дуплексная					M3				
	фепритный					K1	40	260	0,11	
	Ковкий литейный чугун перлитный				867	K2	35	210	0,10	
	Серый чугун (СЧ)	с низким пределом прочности			602	K3	40	260	0,11	
K		с высоким пределом прочности / аустени	ІТНЫЙ	245	825	K4	35	225	0,10	
	Высокопрочный чугун	ферритный		155 265	518 885	K5 K6	40 30	260 220	0,11 0,11	
	Вермикулярный чугун (ЧВГ)	перлитный		200	675	K7	40	175	0,10	
		не упрочняемые термической обработкой	i	30	-	N1	40	175	0,10	
	Алюминиевые ковкие сплавы	упрочняемые термической обработкой, уг		100	343	N2				
		≤ 12 % Si, не упрочняемые термической с	75 90	260	N3					
	Алюминиевые литейные сплавы	≤ 12 % Si, упрочняемые термической обработкой, упрочнённые			314	N4				
N	Mariuson in conserv	> 12 % Si, не упрочняемые термической с	130 70	447	N5					
	Магниевые сплавы	нелегированная, электролитическая мед	b	100	250 343	N6 N7				
	Медь и медные сплавы	латунь, бронза, красная латунь								
	(бронза/латунь)	медные сплавы, дающие сегментную стр	90 110	314 382	N8 N9					
		высокопрочные сплавы Cu-Al-Fe		300	1013	N10				
		на основе Fe	отожжённые	200	675	S1				
			упрочнённые	280	943	S2				
	Жаропрочные сплавы	на основе Ni или Со	отожжённые	250	839	S3				
		HA GENOBE INI WIM CO	упрочнённые литейные	350 320	1177 1076	S4 S5				
S		чистый титан		200	675	S6				
	Титановые сплавы	α- и β-сплавы, упрочнённые		375	1262	S7				
		и- и р-сплавы β-сплавы				S8				
	Вольфрамовые сплавы					S9				
	Молибденовые сплавы					S10				
	Zavanë u pa cran	закалённая и отпущенная		50 HRC 55 HRC	_	H1				
Н	Закалённая сталь закалённая и отпущенная					H2 H3				
	Закалённый чугун	закалённая и отпущенная закалённый и отпущенный		60 HRC 55 HRC	_	H4				
	Термопласты	без абразивных включений		33 11110		01				
	Реактопласты	без абразивных включений				02				
0	Пластмассы, армированные стекловолокном	GFRP				03				
J	Пластмассы, армированные углеволокном	CFRP				04				
	Пластмассы, армированные арамидным волокном	AFRP		00		05				
	Графит (технический)	80 по Шору		06						

 $^{^{1}}$ Классификацию по группам обрабатываемости см. на стр. C671.

Серия инструментов		λ	MC128 Advance		ОВ	λ	Серия и	нструмент	ОВ	λ	Серия инс		λ	
1	MD128 Supreme MD128 ConeFit				MC128 Advance MC128 ConeFit		50° MD377 Supre		MD377 Supreme		MC377 Advance			40°
Ø 6–25 мм			ØZ	2-25 мм / [1	/4-3/4 Дюі	і м]		Ø 6–2	5 мм					
Z = 6-8				Z = 4	4-8			Z =	5			Z =	3–4	
WJ30RA				WJ3	OTF .			WK4	0TZ			WK	40EA	
Начальная скорость резания $v_{_{C}}[_{M/MИH}]$ $3\times D_{_{C}}\qquad \qquad \qquad f_{_{Z}}3\times D_{_{C}}$			Начальн	Начальная скорость резания v _c [м/мин]			Начальная скорость резания v _c [м/мин]				Начальная скорость резания v _c [м/мин]			
PHIS [°]	VC VC	т ₂ 3 х Б _С [мм] на зуб	1/2	a _e / D _c	1/10	VT	1/1	a _e / D _c	1/10	VT	1/1	a _e / D _c	1/10	VT
11115[]	VC.	[MM] Ha Syo	1/2	162	197	A	1/1	1/2	1/10	V 1	150	185	264	A
				222	270	Α					206	253	363	Α
				190	231	A					175	216 216	310	A
				190 134	231 163	A A					175 124	216 153	310 219	A
				190	231	A					175	216	310	A
				190	231	А					175	216	310	Α
				118	143	Α					109	135	192	Α
				111	135	Α					102	127	181	Α
				94	114	A					87	107	153	A
				190 134	231 163	A A					175 124	216 153	310 219	A
				111	135	A					102	127	181	A
20	135	0,21		81	99	A					60	74	106	A
15	105	0,25		54	65	Α					49	61	87	Α
25	165	0,14		113	137	В	87	112	160	В	71	87	125	В
15	95	0,20		56	68	В	54	69	99	В	44	55	78	В
25	110	0,14		76	92	В	73	94	135	В	61	75	107	В
20	85	0,18		62	75	В	54	67	96	В	45	56	80	В
15	50	0,19		37	45	В	32	41	59	В	27	34	49	В
15	85	0,19		62	75	В	54	67	96	В	45	56	80	В
15	55	0,19		37	45	В	32	41	59	В	27	34	49	В
15 35	50 70	0,12 0,12		37 66	45 80	B B	32	41	59	В	27	34	49	В
35	70	0,12		65	79	В	65	95	130	В	60	85	120	В
30	40	0,14		34	42	В	45	55	80	В	40	50	70	В
				86	104	В								
				86	104	В								

Режимы резания для твердосплавных параболических фрез

				Серия ин	струментов		λ				
							MD838 St			1	
								•		30°	
							MD838 Co	neFit			
							Ø 6-1	16 мм			
				HB.		Ξ̈		7 _	4-8		
m				Твёрдость по Бринеллю НВ	E	Группа обрабатываемости ¹		Z =	4-0		
Группа материалов				HE	Предел прочности R _m H/ мм²	Bae		WJ3	BORD		
ри				Бр	HOC	ать	Началы	ная скорость	резания		
AaTe	Основ	ные группы материалов		9119	Poq	opae		v _c [м/мин]	,		
ā		.,		10CT	Б. 2 2	lo al		a _e / D _c			
Б		зёр/	ред/	Pynr	1./5	I	1,50	VT			
		_					1/5	1/20	1/50	VT	
		C ≤ 0,25 %	отожжённая	125	428	P1	230	330	390	A	
		C > 0,25 ≤ 0,55 %	отожжённая	190	639	P2	230	310	380 310	A	
	Нелегированная сталь	C > 0,25 ≤ 0,55 % C > 0,55 %	улучшенная отожжённая	210 190	708 639	P3	210 210	280 280	310	A	
		C > 0.55 %	улучшенная	300	1013	P5	170	200	220	A	
		автоматная сталь (сегментная стружка)	отожжённая	220	745	P6	210	280	330	A	
		отожжённая		175	591	P7	210	280	330	A	
Р	Низколегированная сталь	улучшенная		300	1013	P8	170	200	240	Α	
	пизколегированная сталь	улучшенная	380 430	1282	P9	140	170	200	А		
		улучшенная			1477	P10	120	150	170	A	
	Высоколегированная сталь	отожжённая	200 300	675	P11	210	280	330	A		
	и высоколегированная инструментальная сталь	закалённая и отпущенная закалённая и отпущенная			1013 1361	P12 P13	170 120	200 150	240 170	A	
		ферритная / мартенситная, отожжённая		400 200	675	P14	90	110	120	A	<u> </u>
	Нержавеющая сталь	ющая сталь мартенситная, улучшенная					70	80	100	A	
	аустенитная, закалённая			200	675	M1					
М	Нержавеющая сталь	аустенитная, дисперсионно-твердеющая (РН)			1013 778	M2					
	аустенитно-ферритная, дуплексная					M3					
	Ковкий литейный чугун	ферритный перлитный		200	675	K1	180	240	290	A	
	,,		260 180	867	K2	150	190	220	A		
κ	Серый чугун (СЧ)	с низким пределом прочности с высоким пределом прочности / аустенитный			602 825	K3	180 150	240 200	290 240	A	
K	феллитный				518	K5	180	240	290	A	
	Высокопрочный чугун	перлитный	155 265	885	K6	150	190	220	A		
	Вермикулярный чугун (ЧВГ)			200	675	K7	130	160	190	А	
	Алюминиевые ковкие сплавы	не упрочняемые термической обработкой		30	-	N1					
	THE SECTION OF THE SE	упрочняемые термической обработкой, у	·	100 75	343	N2					
	A	≤ 12 % Si, не упрочняемые термической обработкой			260	N3					
	Алюминиевые литейные сплавы	≤ 12 % Si, упрочняемые термической обработкой, упрочнённые > 12 % Si, не упрочняемые термической обработкой			314 447	N4 N5					
N	Магниевые сплавы	у 12 70 Эг, не упрочилемые термической (12 % 5і, не упрочняемые термической обработкой			N6					
		нелегированная, электролитическая мед	Ь	70 100	250 343	N7					
	Медь и медные сплавы	латунь, бронза, красная латунь		90	314	N8					
	(бронза/латунь)	медные сплавы, дающие сегментную стружку			382	N9					
		высокопрочные сплавы Cu-Al-Fe		300	1013	N10					
		на основе Fe	отожжённые	200	675 943	S1 S2					
	Жаропрочные сплавы		упрочнённые отожжённые	280 250	839	S2 S3					
		на основе Ni или Co	упрочнённые	350	1177	S4					
-			литейные	320	1076	S5					
S		чистый титан		200	675	S6					
	Титановые сплавы	α- и β-сплавы, упрочнённые		375	1262	S7					
	2	β-сплавы		410 300	1396 1013	S8					
	Вольфрамовые сплавы					S9 S10					
	молиоденовые сплавы	Молибденовые сплавы									
	Закалённая сталь	закалённая и отпущенная закалённая и отпущенная		50 HRC 55 HRC	_	H1 H2					
Н	закаленная сталь закаленная и отпущенная закалённая и отпущенная					H3					
	Закалённый чугун закалённый и отпущенный					H4					
	Термопласты	без абразивных включений				01					
	Реактопласты	без абразивных включений				02					
0	Пластмассы, армированные стекловолокном	GFRP				03					
	Пластмассы, армированные углеволокном	CFRP				04					
	Пластмассы, армированные арамидным волокном	AFKP		80 po Illogo		05					
	Графит (технический)		80 по Шору		06						

 $^{^{1}}$ Классификацию по группам обрабатываемости см. на стр. С671.

Серия инстру	/ментов		λ	Серия инстр	ументов		λ	Серия инстр	ументов		λ
MD838 Supre				MD839 Supre			30°	MD839 Supr			30°
			30°	MD033 Supri	eille		30	Мооээ эцрг	eille		50
MD838 Conel	-it										
	Ø 6-	16 мм			Ø 6-1	16 мм			Ø 6-	16 мм	
	Z =	4-8			Z :	= 4			Z :	= 4	
	\A/ I ²	30RA			\A/ 13	BORD			\A/ 15	BORA	
	WJS		Г		W	עאטנ	I		W)	DUKA	
Началь	ьная скорость р	езания		Начал	ьная скорость р	езания		Начал	ьная скорость р	езания	
	ν _С [м/мин]				v _C [м/мин]				v _c [м/мин]		
	a_e / D_c	1			a _e / D _c				a _e / D _c	1	
1/5	1/20	1/50	VT	1/5	1/20	1/50	VT	1/1	1/2	1/10	VT
				230	330	390	A				
				230	310	380	А				
				210	280	310	Α				
				210 170	280 200	310 220	A				
				210	200	330	A A				
				210	280	330	A				
				170	200	240	A				
				140	170	200	Α				
				120	150	170	A A				
				210 280 330 170 200 240							
				170	150	170	A A				
				90	110	120	A				
				70	80	100	A				
110	150	190	В					110	150	190	В
70	90	130	В					70	90	130	В
100	140	180	В					100	140	180	В
				180	240	290	A				
				150 180	190 240	220 290	A A				
				150	200	240	A				
				180	240	290	А				
				150	190	220	А				
1000				130	160	190	A	1000		1=00	
1000 1000	1200 1200	1500 1500	С					1000 1000	1200 1200	1500 1500	C
690	920	1100	С					690	920	1100	С
690	920	1100	С					690	920	1100	С
240	320	390	С					240	320	390	С
800	1060	1280	С					800	1060	1280	С
500	650	800	С					500	650	800	С
500 500	650 650	800 800	С					500 500	650 650	800 800	C
80	90	110	C					80	90	110	C
80	110	130	В					80	110	130	В
60	70	90	В					60	70	90	В
80	90	110	В					80	90	110	В
60	80	110	В					60	80	110	В
60 80	80 110	110 130	B B					60 80	80 110	110 130	B B
60	100	130	B					60	100	130	В
60	110	130	В					60	110	130	В

Рекомендации по выбору подачи

В таблице указаны рекомендуемые значения. В особых случаях необходима корректировка скорости резания.

A

Материалы ISO P, ISO K и титановые сплавы

					Подача на	зуб f _z [мм]				
а _е [мм]*	Ø 0,3 мм	Ø 0,5 мм	Ø 1 мм	Ø 2 мм	Ø 3 мм	Ø 4 мм	Ø6мм	Ø 8 мм	Ø 10 мм	Ø 12 мм
0,01	0,02	0,02	0,03	0,06	0,09	0,12	0,15	0,15	0,20	
0,05	0,01	0,01	0,02	0,04	0,07	0,10	0,12	0,15	0,20	
0,1	0,01	0,01	0,02	0,03	0,05	0,08	0,10	0,15	0,20	0,20
0,2	0,01	0,01	0,01	0,03	0,04	0,06	0,08	0,15	0,18	0,20
0,5		0,01	0,01	0,02	0,03	0,05	0,07	0,12	0,15	0,15
1			0,01	0,02	0,03	0,04	0,06	0,09	0,12	0,12
2				0,02	0,03	0,03	0,05	0,08	0,11	0,12
3					0,02	0,02	0,04	0,07	0,10	0,12
5						0,02	0,04	0,07	0,10	0,12
6							0,03	0,06	0,08	0,10
8								0,05	0,07	0,09
10									0,06	0,08
12										0,07
14										
16										
18										
20										
25										
32										
40										
50										
63										
80										
100										
160										
200										

Δ

Группы материалов ISO P, ISO K и титановые сплавы (продолжение)

					Подача на	зуб f _z [мм]				
а _е [мм]*	Ø 14 мм	Ø 16 мм	Ø 18 мм	Ø 20 мм	Ø 25 мм	Ø 32 мм	Ø 40 мм	Ø 50 мм	Ø 63 мм	Ø 80 мм
0,01										
0,05										
0,1	0,20	0,20								
0,2	0,20	0,20	0,20	0,25						
0,5	0,15	0,15	0,20	0,25	0,25					
1	0,12	0,12	0,15	0,20	0,25	0,25	0,30	0,30	0,30	0,40
2	0,12	0,12	0,15	0,20	0,20	0,25	0,25	0,25	0,30	0,30
3	0,12	0,12	0,14	0,18	0,20	0,20	0,25	0,25	0,25	0,30
5	0,12	0,12	0,12	0,15	0,20	0,20	0,20	0,25	0,25	0,25
6	0,10	0,12	0,12	0,15	0,20	0,20	0,20	0,20	0,25	0,25
8	0,10	0,12	0,12	0,15	0,20	0,20	0,20	0,20	0,20	0,25
10	0,10	0,12	0,12	0,14	0,16	0,20	0,20	0,20	0,20	0,20
12	0,09	0,11	0,12	0,14	0,16	0,16	0,20	0,20	0,20	0,20
14	0,08	0,10	0,12	0,13	0,15	0,16	0,16	0,20	0,20	0,20
16		0,09	0,10	0,12	0,15	0,15	0,16	0,16	0,20	0,20
18			0,10	0,11	0,13	0,15	0,15	0,16	0,16	0,20
20				0,10	0,12	0,13	0,15	0,15	0,16	0,16
25					0,10	0,12	0,13	0,15	0,15	0,16
32						0,10	0,12	0,13	0,15	0,15
40							0,10	0,12	0,13	0,15
50								0,10	0,12	0,13
63									0,10	0,12
80										0,10
100										
160										
200										

^{*} Ширина резания в мм

В таблице указаны рекомендуемые значения. В особых случаях необходима корректировка скорости резания.

В Материалы группы ISO M, ISO H, жаропрочные сплавы, вольфрамовые и молибденовые сплавы

					Подача на	зуб f _z [мм]				
а _е [мм]*	Ø 0,3 мм	Ø 0,5 мм	Ø 1 мм	Ø 2 мм	Ø 3 мм	Ø 4 мм	Ø 6 мм	Ø 8 мм	Ø 10 мм	Ø 12 мм
0,01	0,02	0,02	0,02	0,05	0,07	0,10	0,12	0,12	0,16	
0,05	0,01	0,01	0,02	0,03	0,06	0,08	0,10	0,12	0,16	
0,1	0,01	0,01	0,02	0,03	0,04	0,06	0,08	0,12	0,16	0,16
0,2	0,01	0,01	0,01	0,02	0,03	0,05	0,06	0,12	0,14	0,16
0,5		0,01	0,01	0,02	0,02	0,04	0,06	0,10	0,12	0,12
1			0,01	0,02	0,02	0,03	0,05	0,07	0,10	0,10
2				0,02	0,02	0,02	0,04	0,06	0,09	0,10
3					0,02	0,02	0,04	0,06	0,08	0,10
5						0,02	0,03	0,06	0,08	0,10
6							0,02	0,05	0,06	0,08
8								0,04	0,06	0,07
10									0,05	0,06
12										0,06
14										
16										
18										
20										
25										
32										
40										
50										
63										
80										
100										
160										
200										

В Группы материалов ISO M, ISO H, жаропрочные сплавы, вольфрамовые и молибденовые сплавы (продолжение)

		0,16 0,16 0,16 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,24 0,22 0,22 0,20 <th< th=""><th></th></th<>								
а _е [мм]*	Ø 14 мм	Ø 16 мм	Ø 18 мм	Ø 20 мм	Ø 25 мм	Ø 32 мм	Ø 40 мм	Ø 50 мм	Ø 63 мм	Ø 80 мм
0,01										
0,05										
0,1	0,16	0,16								
0,2	0,16	0,16	0,16	0,20						
0,5	0,12	0,12	0,16	0,20	0,20					
1	0,10	0,10	0,12	0,16	0,20	0,20	0,24	0,24	0,24	0,32
2	0,10	0,10	0,12	0,16	0,16	0,20	0,20	0,20	0,24	0,24
3	0,10	0,10	0,11	0,14	0,16	0,16	0,20	0,20	0,20	0,24
5	0,10	0,10	0,10	0,12	0,16	0,16	0,16	0,20	0,20	0,20
6	0,08	0,10	0,10	0,12	0,16	0,16	0,16	0,16	0,20	0,20
8	0,08	0,10	0,10	0,12	0,16	0,16	0,16	0,16	0,16	0,20
10	0,08	0,10	0,10	0,11	0,13	0,16	0,16	0,16	0,16	0,16
12	0,07	0,09	0,10	0,11	0,13	0,13	0,16	0,16	0,16	0,16
14	0,06	0,08	0,10	0,10	0,12	0,13	0,13	0,16	0,16	0,16
16		0,07	0,08	0,10	0,12	0,12	0,13	0,13	0,16	0,16
18			0,08	0,09	0,10	0,12	0,12	0,13	0,13	0,16
20				0,08	0,10	0,10	0,12	0,12	0,13	0,13
25					0,08	0,10	0,10	0,12	0,12	0,13
32						0,08	0,10	0,10	0,12	0,12
40							0,08	0,10	0,10	0,12
50								0,08	0,10	0,10
63									0,08	0,10
80										0,08
100										
160										
200										

^{*} Ширина резания в мм

Рекомендации по выбору подачи

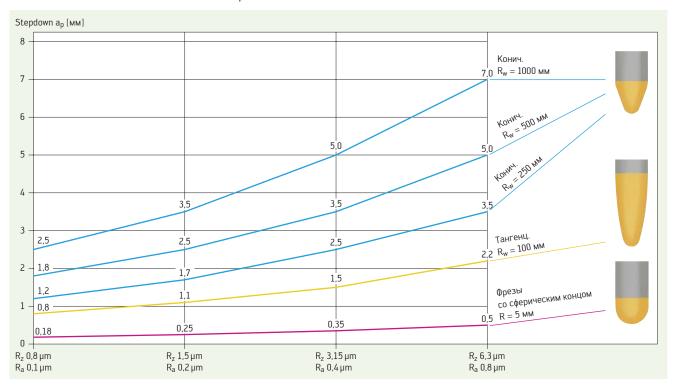
В таблице указаны рекомендуемые значения. В особых случаях необходима корректировка скорости резания.

(продолжение)

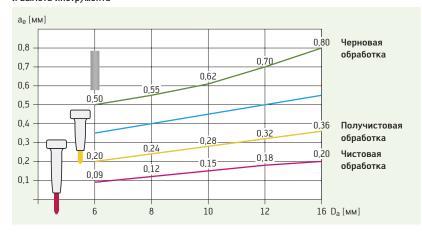
С Группы материалов ISO N и ISO 0

					Подача на	зуб f _z [мм]				
а _е [мм]*	Ø 0,3 мм	Ø 0,5 мм	Ø 1 мм	Ø 2 мм	Ø 3 мм	Ø 4 мм	Ø 6 мм	Ø 8 мм	Ø 10 мм	Ø 12 мм
0,01	0,04	0,04	0,07	0,13	0,20	0,26	0,33	0,33	0,44	
0,05	0,03	0,03	0,06	0,09	0,15	0,22	0,26	0,33	0,44	
0,1	0,02	0,03	0,04	0,08	0,11	0,18	0,22	0,33	0,44	0,44
0,2	0,02	0,02	0,03	0,07	0,09	0,13	0,18	0,33	0,40	0,44
0,5		0,02	0,03	0,06	0,07	0,11	0,15	0,26	0,33	0,33
1			0,02	0,06	0,07	0,09	0,13	0,20	0,26	0,26
2				0,04	0,07	0,07	0,11	0,18	0,24	0,26
3					0,04	0,06	0,10	0,17	0,23	0,26
5						0,04	0,09	0,15	0,22	0,26
6							0,07	0,13	0,18	0,22
8								0,11	0,15	0,20
10									0,13	0,18
12										0,15
14										
16										
18										
20										
25										
32										
40										
50										
63										
80										
100										
160										
200										

Группы материалов ISO N и ISO O (продолжение)


					Подача на	зуб f _z [мм]				
а _е [мм]*	Ø 14 мм	Ø 16 мм	Ø 18 мм	Ø 20 мм	Ø 25 мм	Ø 32 мм	Ø 40 мм	Ø 50 мм	Ø 63 мм	Ø 80 мм
0,01										
0,05										
0,1	0,44	0,44								
0,2	0,44	0,44	0,44	0,50						
0,5	0,33	0,33	0,44	0,50	0,50					
1	0,26	0,26	0,33	0,44	0,50	0,50	0,50	0,50	0,50	0,50
2	0,26	0,26	0,33	0,44	0,44	0,50	0,50	0,50	0,50	0,50
3	0,26	0,26	0,30	0,39	0,44	0,44	0,50	0,50	0,50	0,50
5	0,26	0,26	0,26	0,33	0,44	0,44	0,44	0,50	0,50	0,50
6	0,22	0,26	0,26	0,33	0,44	0,44	0,44	0,44	0,50	0,50
8	0,22	0,26	0,26	0,33	0,44	0,44	0,44	0,44	0,44	0,55
10	0,22	0,26	0,26	0,31	0,35	0,44	0,44	0,44	0,44	0,44
12	0,20	0,24	0,26	0,31	0,35	0,35	0,44	0,44	0,44	0,44
14	0,18	0,22	0,26	0,29	0,33	0,35	0,35	0,44	0,44	0,44
16		0,20	0,22	0,26	0,33	0,33	0,35	0,35	0,44	0,44
18			0,22	0,24	0,29	0,33	0,33	0,35	0,35	0,44
20				0,22	0,26	0,29	0,33	0,33	0,35	0,35
25					0,22	0,26	0,29	0,33	0,33	0,35
32						0,22	0,26	0,29	0,33	0,33
40							0,22	0,26	0,29	0,33
50								0,22	0,26	0,29
63									0,22	0,26
80										0,22
100										
160										
200										

^{*} Ширина резания в мм


Рекомендации по применению параболических фрез

Рекомендуемые значения глубина резания по оси a_p [мм] в зависимости от типа инструмента и шероховатости поверхности

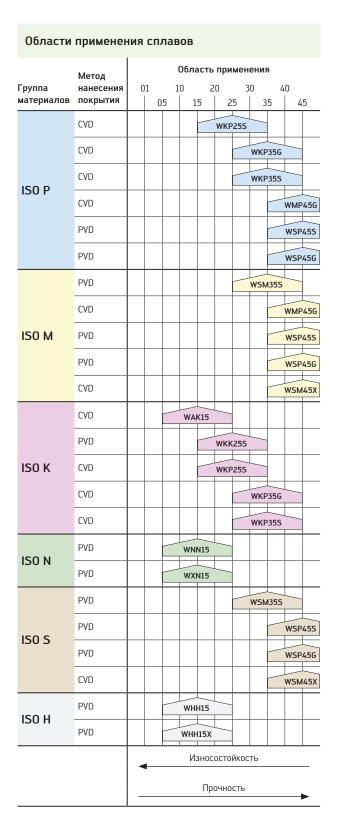
Пример на основании b_r/a_p подачи 5 мм При меньшем a_p возможно большее a_e вследствие силового воздействия!

Рекомендуемые значения a_{e} [мм] в зависимости от наружного диаметра D_{a} [мм] и вылета инструмента

Рекомендуемые значения для скорости резания и подачи на зуб

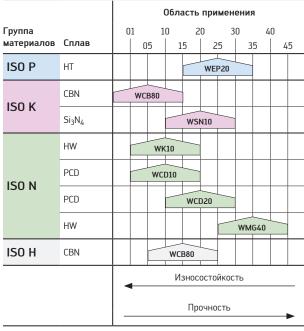
	Обозначение материала	Предел прочности/ твердость	v _с [м/мин]	f _z [мм]
	S2335	800 H/mm²	300	0,07
ISO P	38XM	1000 Н/мм²	220	0,06
		1400 Н/мм²	180	0,05
ISO M	08X18H10		200	0,07
150 W	10X17H13M2T		180	0,05
ISO K			350	0,15
ISO S	BT6		110	0,08
150 5	Inconel 718		50	0,035
ISO N			400	0,2
ISO H	4Х5МФ1С	до 54 HRC	150	0,03

Обзор программы пластин для фрезерования


Форма пластин	Ы	Описание	Стр.
	A	Ромбические с задними углами для Xtra·tec® XT	186
	В	Ромбические с задними углами для Xtra·tec® XT	188
	E	Ромбические двусторонние для Xtra·tec® XT	201
		Ромбические двусторонние для Xtra·tec ®	201
	L	Ромбические тангенциальные для Walter BLAXX	210
	М	Ромбические с задними углами	190
	0	Восьмигранные с задними углами для Xtra·tec® С зачистными режущими кромками Восьмигранные двусторонние	190 199 202
	R	Круглые с задними углами	193
	S	Квадратные с задними углами Квадратные двусторонние для Xtra·tec®/Xtra·tec®XT	195 203
	Т	Трёхгранные двусторонние для Xtra·tec® XT	205

Форма пластины	Описание	Стр.
(O) X	Семигранные двусторонние для Walter BLAXX	206
X	Тангенциальные для Walter BLAXX	211
X	С задними углами для фрез для профильной обработки	198
P 236	Трёхгранные двусторонние для быстроходных фрез Xtra·tec ®	202
P 263	Трёхгранные с задними углами для быстроходных фрез для профильной обработки	191
P 32	Чистовые для профильной обработки	192
	Для чистовой обработки, с задними углами Для чистовой обработки, двусторонние	199

Обзор программы сплавов для фрезерования


Сплавы: твёрдый сплав с покрытием

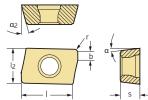
Сплавы

твёрдый сплав без покрытия, кермет, керамика, CBN и PCD

Области применения сплавов

 $Si_3N_4 =$ керамика на основе нитрида кремния

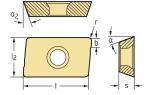
HW = твёрдый сплав без покрытия


НТ = кермет

CBN = кубический нитрид бора
PCD = поликристаллический алмаз

Пластины ромбические с задними углами ACMT

Tiger-tec® Gold

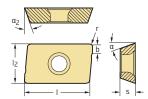


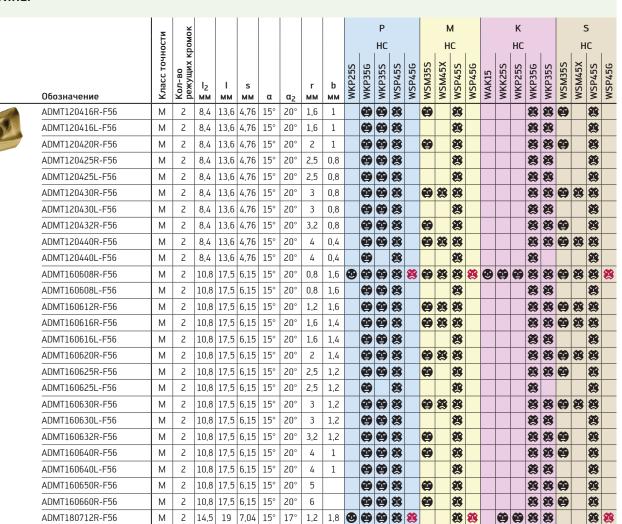
Пластины																										
		чности	кромок										P HC				M IC				K HC				S HC	
	Обозначение	Класс точн	Кол-во режущих к	I ₂	l mm	S MM	α	α ₂	r MM	b MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WSM35S	WSP45S	WSP456
	ACMT060202R-G55	М	2	4,4	6,7	2,38	7°	15°	0,2	1		(2)		33	33	1	13	1				23	33		3	*
	ACMT060204R-G55	М	2	4,4	6,7	2,38	7°	15°	0,4	0,9	•	(3)		\$	3	49	1	19	3			3	33			3
	ACMT060208R-G55	М	2	4,4	6,7	2,38	7°	15°	0,8	0,8				33	3	1	1	13				3	33			*
	ACMT060212R-G55	М	2	4,4	6,7	2,38	7°	15°	1,2	0,6		(3)		\$		1	1	1				3	33			*
	ACMT060216R-G55	М	2	4,4	6,7	2,38	7°	15°	1,6	0,1						1	1	E C				3	33			*

НС = твёрдый сплав с покрытием

Пластины ромбические с задними углами ADMT

Tiger-tec® Gold

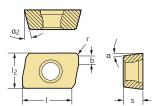

Пластины																											
		ž	MOK										Р				М					K				S	
			кромок									ı	HC		l		HC	: ,		1	ŀ	HC	ı		Н	IC	1
	Обозначение	Класс точности	Кол-во режущих	I ₂	I MM	S MM	α	α ₂	r MM	b мм	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSM45X	WSP45S	WSP436	WAKID	WKK25S	WKP25S WKP35G	WKP35S	WSM35S	WSM45X	WSP45S	WSP456
	ADMT080302R-F56	М	2	6,75	9,52	3,35	15°	20°	0,2	1,2							1	X				ă	ă			23	
6 00	ADMT080304R-F56	М	2	6,75	9,52	3,35	15°	20°	0,4	1,2	•						1	3	9	9		e e	ă			33	
	ADMT080304L-F56	М	2	6,75	9,52	3,35	15°	20°	0,4	1,2							1	X				ă	ă	ì		23	
	ADMT080308R-F56	М	2	6,75	9,52	3,35	15°	20°	0,8	1,2					3		1	3	3			ă	ă			33	*
	ADMT080308L-F56	М	2	6,75	9,52	3,35	15°	20°	0,8	1,2				3			1	X				ă	ă	ì		23	
	ADMT080312R-F56	М	2	6,75	9,52	3,35	15°	20°	1,2	1				33		(3)	1	13				Œ	ă			33	
	ADMT080316R-F56	М	2	6,75	9,52	3,35	15°	20°	1,6	1				33			1	X				ă	ă			33	
	ADMT080320R-F56	М	2	6,75	9,52	3,35	15°	20°	2	1				3			1	3				Œ.	ă			33	
	ADMT10T304R-F56	М	2	7,25	11,3	3,8	15°	15°	0,4	1,2				3		(3)	1	13				ă	ă			33	
	ADMT10T308R-F56	М	2	7,25	11,3	3,8	15°	15°	0,8	1,2	•				3			3	3	•	9	3	ă		23	33	33
	ADMT10T312R-F56	М	2	7,25	11,3	3,8	15°	15°	1,2	1,2				3			1	3				Œ.	ă			23	
	ADMT10T316R-F56	М	2	7,25	11,3	3,8	15°	15°	1,6	1,2				3		(3)	3	X				ă	ă		33	33	
	ADMT10T320R-F56	М	2	7,25	11,3	3,8	15°	15°	2	1				3		(3)		3				Œ.	ă		23	23	
	ADMT10T325R-F56	М	2	7,25	11,3	3,8	15°	15°	2,5	1							1	3				ă	t	49		33	
	ADMT10T330R-F56	М	2	7,25	11,3	3,8	15°	15°	3	0,8				3			1	3				Œ.	ă			23	
	ADMT10T332R-F56	М	2	7,25	11,3	3,8	15°	15°	3,2	0,8				33		(3)		X				ă	ţ		33	33	
	ADMT120404R-F56	М	2	8,4	13,6	4,76	15°	20°	0,4	1,2				23		69	1	3				Œ	ă			23	
	ADMT120408R-F56	М	2	8,4	13,6	4,76	15°	20°	0,8	1,2	•		(3)	3	3	(3)	3 (*	3	9	3	3	ă		3	3	33
	ADMT120408L-F56	М	2	8,4	13,6	4,76	15°	20°	0,8	1,2				3				X				ă				3	
	ADMT120412R-F56	М	2	8,4	13,6	4,76	15°	20°	1,2	1,2				3		(3)		3				ă	ă		23	33	



Пластины ромбические с задними углами ADMT

Tiger-tec® Gold

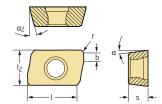
Пластины



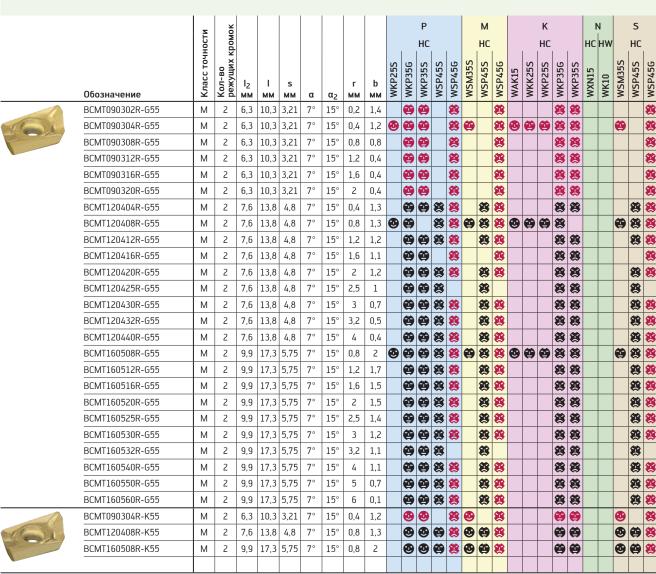
Пластины ромбические с задними углами BCGT / BCHT / BCMT

Tiger-tec® Gold

Пластины																												
		ности	кромок									ı	P HC	ı			M HC		1		K HC			HC	HW		S IC	
	Обозначение	Класс точности	Кол-во режущих в	I ₂	I MM	S MM	α	α ₂	r MM	b mm	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S		WSP456
	BCGT090304R-G55	G	2	6,3	10,3	3,21	7°	15°	0,4	1,2	®					(3)	;	3	9								1	
	BCGT120408R-G55	G	2	7,6	13,8	4,8	7°	15°	0,8	1,3	®								9			33	3			\$	1	
	BCGT160508R-G55	G	2	9,9	17,3	5,75	7°	15°	0,8	2	•			33		(2)			9			3				8	1	
	BCGT090304R-K85	G	2	6,3	10,3	3,21	7°	15°	0,4	1,2														•				
	BCHT120408R-K85	Н	2	7,6	13,8	4,8	7°	15°	0,8	1,3														®				
	BCHT120412R-K85	Н	2	7,6	13,8	4,8	7°	15°	1,2	1,2														®				
	BCHT120416R-K85	Н	2	7,6	13,8	4,8	7°	15°	1,6	1,1														•				
	BCHT120420R-K85	Н	2	7,6	13,8	4,8	7°	15°	2	1,2														•	49			
	BCHT120425R-K85	Н	2	7,6	13,8	4,8	7°	15°	2,5	1														®	(3)			
	BCHT120430R-K85	Н	2	7,6	13,8	4,8	7°	15°	3	0,7														®	(3)			
	BCHT120440R-K85	Н	2	7,6	13,8	4,8	7°	15°	4	0,4														®	(3)			
	BCHT160508R-K85	Н	2	9,9	17,3	5,75	7°	15°	0,8	2														®	(2)			
	BCHT160512R-K85	Н	2	9,9	17,3	5,75	7°	15°	1,2	1,7														•	(29			
	BCHT160516R-K85	Н	2	9,9	17,3	5,75	7°	15°	1,6	1,7														0	49			
	BCHT160520R-K85	Н	2	9,9	17,3	5,75	7°	15°	2	1,5														•	49			
	BCHT160525R-K85	Н	2	9,9	17,3	5,75	7°	15°	2,5	1,4														0	#			
	BCHT160530R-K85	Н	2	9,9	17,3	5,75	7°	15°	3	1,2														•	#			
	BCHT160540R-K85	Н	2	9,9	17,3	5,75	7°	15°	4	1,1														•			T	
	BCMT090304R-F55	М	2	6,3	10,3	3,21	7°	15°	0,4	1,2	•				33		;		9			3	3				1	
56	BCMT120408R-F55	М	2	7,6	13,8	4,8	7°	15°	0,8		®	_		33		;	33	_	\rightarrow	-	-	3	_			\$	1	
	BCMT160508R-F55	М	2	9,9	17,3	5,75	7°	15°	0,8		•								9			23					1	


HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

C 2



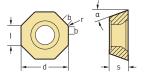
Пластины ромбические с задними углами BCGT / BCHT / BCMT

Tiger-tec® Gold

 п	2	ГИ	ш	ᆸ
 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	а	 ш	п	ОІ

Пластины ромбические с задними углами MPMX / MPMT

Tiger-tec® Gold

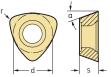


Пластины																						
		точности	кромок								P HC				M HC			K HC			S HC	
	Обозначение	Класс точ	Кол-во режущих к	I ₂	I MM	S MM	α	r MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WKP25S	WKP356	WKP35S	WSM35S	WSP45S	WSP456
	MPMX060304-F57	М	2	6,35	6,35	3,18	11°	0,4						8		*						
	MPMX080305-F57	М	2	8,3	8,3	3,18	11°	0,5								*						
	MPMT120408-F57	М	2	12,7	12,7	4,76	11°	0,8		(4)	(2)	33	23	(4)	3	33		33	33	49	33	23
S																						

НС = твёрдый сплав с покрытием

Пластины восьмигранные с задними углами ODHT / ODMT

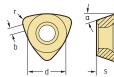
Tiger-tec® Gold


Пластинь	ластины																									
		, s	¥									Р				N	Л			ŀ	<			S	5	
		точности	кромок								ı	HC	ı	1		Н	C			Н	C	ı		Н	С	
	Обозначение	Класс точ	Кол-во режущих в	I MM	d MM	S MM	α	r MM	b мм	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSM45X	WSP45S	WSP456	WKK25S	WKP25S	WKP356	WKP35S	WSM35S	WSM45X	WSP45S	WSP456
32 13	ODHT050408-F57	Н	8	5,26	12,7	4,76	15°	0,8					\$												*	
	ODHT060512-F57	Н	8	6,58	15,88	5,56	15°	1,2					3								3					
		+																								
22.00	ODHT0504ZZN-F57	Н	8	5,26	12,7	4,76	15°	0,8	1,2	•	(3)	(3)	33	33	(3)		33	33		(3)	33	3			33	***
	ODHT0605ZZN-F57	Н	8	6,58	15,88	5,56	15°	0,8	1,6	•							3				3				33	33
		+																								
20	ODMT050408-D57	М	8	5,26	12,7	4,76	15°	0,8			49	49	33	33	*		33	23	49		33	3	*		3	3
	ODMT060512-D57	М	8	6,58	15,88	5,56	15°	1,2			(3)			(3)			33		(3)		33				3	33
		+																								
230	ODMT0504ZZN-D57	М	8	5,26	12,7	4,76	15°	0,8	1,2	•	(3)	(2)	33	33	(3)	33	33	33	(3)	(3)	33	33	(3)	33	33	33
	ODMT0605ZZN-D57	М	8	6,58	15,88	5,56	15°	0,8	1,6	•		(3)						33								

НС = твёрдый сплав с покрытием

Пластины трёхгранные с задними углами P26335 / P26339

Tiger-tec® Gold



Пластинь	I																				
	Обозначение	Класс точности	Кол-во режущих кромок	d	S	_	r	WKP25S		WKP35S H 4	WSP45S	WSP456	WSM35S	WSP45S H W	WSP456	WKP25S	WKP356 H X	WKP35S		WSP45S H v	WSP456
THE RESERVE	Р26335R10	M	3	MM 6,75	MM 3,18	α 14°	0,8	-			-	-	<u>></u>	-	<u>></u>	-		-	<i>></i>	_	-
	P26335R14	М	3	9,52	3,97	14°	1,2				_		_	_	3	$\overline{}$			*		
	P26335R25	М	3	13	5,56	14°	2						-	$\overline{}$	33	$\overline{}$	-	-			
	P26339R10	М	3	6,75	3,18	14°	0,8			(3)		3	(3)	33	(3)		*	33			
	P26339R14	М	3	9,52	3,97	14°	1,2		(3)		33		(3)	33			3	33			
400	P26339R25	М	3	13	5,56	14°	2							3			33				

НС = твёрдый сплав с покрытием

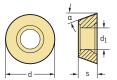
Пластины трёхгранные с задними углами P26379

Tiger-tec® Gold

Пластины																						
		СТИ	кромок								Р				М			K			S	
		точности	крс							l	HC	ı			HC			HC	ı		HC	
		Класс то	Кол-во режущих	d	s		r	b	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP45G	WKP25S	WKP356	WKP35S	WSM35S	WSP45S	WSP456
	Обозначение	3	조 교	ММ	ММ	α	ММ	ММ	-	-	-	-		-	_	-	-		-	-	-	-
THE PARTY OF THE P	P26379-R10	М	3	6,75	3,18	14°	0,8	0,9				33						33	33			
	P26379-R14	М	3	9,52	3,97	14°	1,2	1							3			33	3		3	
	P26379-R25	М	3	13	5,56	14°	2	1,1					(3)		3			33	33		*	

Пластины чистовые для профильной обработки P3204 / P3201

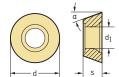
Tiger-tec®


ı
ı

			ı				I																				
		Ξ	10K							F)				M	1			k	(5	5		ŀ	ł
		H0C	кромок							Н	C				Н			1	Н	С			Н	IC .		Н	С
	Обозначение	Класс точности	Кол-во режущих в	D _с -0,03 мм	S MM	I ₁	d ₁	WKP25S	WKP25	WKP35S	WKP35	WSP45S	WSP46	WSM35S	WSM36	WSP45S	WSP46	WKP25	WKP25S	WKP35S	WKP35	WSM35S	WSM36	WSP45S	WSP46	WHH15	WHH15X
	P3204-D07.94	Н	2	7,94	2	4	3																			П	®
	P3204-D08	Н	2	8	2	4	3						3		(3)		23									®	®
	P3204-D09.52	Н	2	9,53	2,5	5	4										33									®	(3)
	P3204-D10	Н	2	10	2,5	5	4						3				23									®	®
	P3204-D12	Н	2	12	2,5	6	5						33				23									•	®
	P3204-D12.7	Н	2	12,7	2,5	6	5						3				33									®	®
	P3204-D15.87	Н	2	15,88	3	6	5						33				23									•	®
	P3204-D16	Н	2	16	3	6	5						3				23										(3)
	P3204-D19.05	Н	2	19,05	3	6	5						33				23									®	®
	P3204-D20	Н	2	20	3	6	5						3				33									®	®
	P3204-D25	Н	2	25	4	9	6						33				23									•	®
	P3204-D25.4	Н	2	25,4	4	9	6						33				33									®	®
	P3204-D30	Н	2	30	5	10	8						3				33									®	®
	P3204-D31.75	Н	2	31,75	5	10	8						3				33									®	®
	P3204-D32	Н	2	32	5	10	8						33				23									•	®
	P3201-D07.94	Н	2	7,94	2	4	3																			П	®
9	P3201-D08	Н	2	8	2	4	3																			®	•
1	P3201-D09.52	Н	2	9,53	2,5	5	4																				(1)
	P3201-D10	Н	2	10	2,5	5	4		(3)								(*			3					®	(3)
	P3201-D12	Н	2	12	2,5	6	5		8												(B)					®	•
	P3201-D12.7	Н	2	12,7	2,5	6	5																			П	®
	P3201-D15.87	Н	2	15,88	3	6	5																				®
	P3201-D16	Н	2	16	3	6	5				33						- (#								®	•
	P3201-D19.05	Н	2	19,05	3	6	5																				®
	P3201-D20	Н	2	20	3	6	5				33						-	#								®	8 8
	P3201-D25	Н	2	25	4	9	6																			•	®
	P3201-D25.4	Н	2	25,4	4	9	6																				
	P3201-D30	Н	2	30	5	10	8																			®	(3)
	P3201-D31.75	Н	2	31,75	5	10	8																				•
	P3201-D32	Н	2	32	5	10	8																			®	®

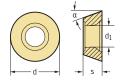
Пластины круглые с задними углами ROHX / ROMX

Tiger-tec® Gold


Пластин	Ы																							
		_ z	¥							F	>				М				K			S	j	
	Обозначение	Класс точности	Кол-во режущих кромок	d MM	s MM	α	d ₁	WKP25S	WKP35G	WKP35S I		WSP45S	WSP456	WSM35S	WSM45X H	WSP45S	WSP456	WKP25S	WKP356 开	WKP35S	WSM35S	WSM45X		WSP456
	ROHX0803M0-D57	H	4	8	3.18	11°	3,4	_	(3)		-	_	3	4	-	23	23	-	-	33		-		
	ROHX10T3M0-D57	Н.	4	10	3,97	11°	4,4		69	_			33 §	_	_	23	23			23			23	
	ROHX1204M0-D57	Н	4	12	4,76	11°	4,4			-			23 2	_	_	33	33	_		_			23	<u>~</u>
	ROHX1605M0-D57	Н	6	16	5,56	15°	5,5		69				23			33	33						33	<u>~</u>
	ROHX2006M0-D57	Н	8	20	6,35	15°	6,5					33	-	E		23	-						33	_
	ROHX0803M0-D67	Н	4	8	3,18	11°	3,4					_	3	6		23	23		23				_	3
	ROHX10T3M0-D67	Н	4	10	3,97	11°	4,4						23 §	_	_	23	23		33					
	ROHX1204M0-D67	Н	4	12	4,76	11°	4,4				33		# §		_	33	3						23	
	ROHX1605M0-D67	Н	6	16	5,56	15°	5,5		(2)				33	4		23	33		3				33	
	ROHX10T3M0-F67	Н	4	10	3,97	11°	4,4		(2)		33	3	23 2	3 (5)	23	33		3				23	
	ROHX1204M0-F67	Н	4	12	4,76	11°	4,4				33	33	23 2	3 (5		33	*		*				33	
	ROMX0803M0-D57	М	4	8	3,18	11°	3,4					33		E			\$	_		3				
	ROMX10T3M0-D57	М	4	10	3,97	11°	4,4						23	4			*							
	ROMX1204M0-D57	М	4	12	4,76	11°	4,4				$\overline{}$	\rightarrow	33	4	_	33	3	_		3		-		
	ROMX1605M0-D57	М	6	16	5,56	15°	5,5						23	4		33	\$							
	ROMX2006M0-D57	М	8	20	6,35	15°	6,5					33	3	4)	33	*		(8)	\$	8		33	

Пластины круглые с задними углами RDMT

Tiger·tec® Gold



Пластинь	bl																			
	Обозначение	Класс точности	d MM	S MM	α	d ₁ мм	WKP25S	WKP356	WKP35S H 4	WSP45S	WSP45G	WSM35S	WSP45S H W	WSP45G	WKP25S	WKP356 H X	WKP35S	WSM35S	WSP45S H w	WSP456
	RDMT0803M0-D57	М	8	3,18	15°	3,4			(2)	33	*		33	(3)			33		23	33
	RDMT10T3M0-D57	М	10	3,97	15°	4,4	•			3			*			3	33	(3)		33
	RDMT1204M0-D57	М	12	4,76	15°	4,4	•			33	*		*	3		*	33		23	33
	RDMT1605M0-D57	М	16	5,56	15°	5,5	•						*			*	*		33	33
	RDMT2006M0-D57	М	20	6,35	15°	6,5	•						3	3					33	33

НС = твёрдый сплав с покрытием

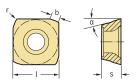
Пластины круглые с задними углами RDHX / RDGX / RDMX

Tiger-tec® Gold

	_							Р				М		- 1	<	N		S		-	Н
	- P							НС				НС		Н	IC	нм	1	НС		Н	IC
Обозначение	Класс точности	d MM	S MM	α	d ₁ мм	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WKP25S	WKP356	WK10	WSM35S	WSP45S	WSP456	WHH15	WILLIAEV
RDHX0501M0-A57	Н	5	1,5	15°	2,2								•	3	3 (2	ì				®	•
RDHX07T1M0-A57	Н	7	1,98	15°	2,8									1	3 2	Ì				®	6
RDHX0702M0-A57	Н	7	2,35	15°	2,8															®	•
RDHX1003M0-A57	Н	10	3,18	15°	4,4									\$	3 8	;				•	9
RDHX12T3M0-A57	Н	12	3,97	15°	4,4									1	3 8	ì				®	9
RDHX1604M0-A57	Н	16	4,76	15°	5,5		33	33						1	3 2	ì				®	•
RDHX2006M0-A57	Н	20	6	15°	5,5			3							3 8						6
RDGX0501M0-G88	G	5	1,5	15°	2,2											(3)					
RDGX07T1M0-G88	G	7	1,98	15°	2,8											(3)					
RDGX1003M0-G88	G	10	3,18	15°	4,4											49					
RDGX12T3M0-G88	G	12	3,97	15°	4,4											(3)					
RDGX1604M0-G88	G	16	4,76	15°	5,5											49					
RDGX2006M0-G88	G	20	6	15°	5,5											(3)					
RDMX0501M0-D57	М	5	1,5	15°	2,2		3	33		33		1	1	1	3 8	;			33		
RDMX07T1M0-D57	М	7	1,98	15°	2,8		33	3		*		1	13		3 2				33		
RDMX1003M0-D57	М	10	3,18	15°	4,4			3				1	13	1	3 2	;			33		
RDMX12T3M0-D57	М	12	3,97	15°	4,4		33	3		33		1	13	1	3 2	;			33		
RDMX1604M0-D57	М	16	4,76	15°	5,5		3	33		33		1	1		3 2				33		
RDMX2006M0-D57	М	20	6	15°	5,5		33	33		33					3 8	1			33		

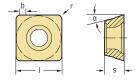
Пластины квадратные с задними углами SDMW / SDMT

Tiger-tec® Gold


Пластины																									
		Класс точности	Кол-во режущих кромок					WKP25S	WKP356	WKP35S H 4	WSP45S	WSP456	WSM35S	WSM45X H M	WSP45S	430	(15		WKP25S H X	WKP35G	WKP35S	WSM35S		WSP45S	WSP456
	Обозначение	Кла	Кол-во режущи	I MM	S MM	α	r MM	×	×	×	WSI	WSI	WSI	WSI	WSI	2	WAK15	×	×	×	×	WSI	WSI	WSI	WSI
To all	SDMW06T204-A57	М	4	6,35	2,78	15°	0,4			33								((2)	3	33				
	SDMW09T308-A57	М	4	9,52	3,97	15°	0,8		33	33								- ((2)		3				
	SDMW09T320-A57	М	4	9,52	3,97	15°	2		33	3	3			1	3	3		49			3				
	SDMW120408-A57	М	4	12,7	4,76	15°	0,8														*				
	SDMW120425-A57	М	4	12,7	4,76	15°	2,5								3	3				*	*				
	SDMT06T204-D51	М	4	6,35	2,78	15°	0,4	•			*				3	3				*	*				33
	SDMT09T308-D51	М	4	9,52	3,97	15°	0,8	•						1	3	3					\$				33
	SDMT120408-D51	М	4	12,7	4,76	15°	0,8	•			33			1	3	3		(3	33				33
	SDMT06T204-D57	М	4	6,35	2,78	15°	0,4	•						1	3						*				
	SDMT09T308-D57	М	4	9,52	3,97	15°	0,8	•							3						*				8 8
	SDMT120408-D57	М	4	12,7	4,76	15°	0,8	•			3			1	3	3					*				
Toward of	SDMT06T204-F57	М	4	6,35	2,78	15°	0,4	3						33	3	3	®	(33
	SDMT06T208-F57	М	4	6,35	2,78	15°	0,8		_		33			_	3	_					33				33
	SDMT06T212-F57	М	4	6,35	2,78	15°	1,2				3	-		33	3						3				33
	SDMT09T304-F57	М	4	9,52	3,97	15°	0,4								3	3					*				33
	SDMT09T308-F57	М	4	9,52	3,97	15°	0,8	3			3			33	3	3	®	(3				
	SDMT09T312-F57	М	4	9,52	3,97	15°	1,2							1	3	3					3				33
	SDMT09T316-F57	М	4	9,52	3,97	15°	1,6				*				3						3				33
	SDMT09T320-F57	М	4	9,52	3,97	15°	2							33	3						3				33
	SDMT120408-F57	М	4	12,7	4,76	15°	0,8	•			*				3	3	®			*	33				33
	SDMT120412-F57	М	4	12,7	4,76	15°	1,2				33			1	3						3				33
	SDMT120416-F57	М	4	12,7	4,76	15°	1,6				3			1	3	_				\$	33				33
	SDMT120420-F57	М	4	12,7	4,76	15°	2							1	*	_				\$	33				33
	SDMT120425-F57	М	4	12,7	4,76	15°	2,5							33	3	3				*	3				33

Пластины квадратные с задними углами SDMT

Tiger-tec® Gold

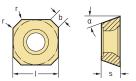


Пластинь	ı																					
			0K								Р				М			K			S	
		точности	кромок								НС				НС			НС			нс	
	Обозначение	Класс точі	Кол-во режущих к	I MM	S MM	α	r MM	b MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WKP25S	WKP356	WKP35S	WSM35S	WSP45S	WSP456
6	SDMT06T2ZDR-D57	М	4	6,4	2,78	15°	0,4	1,2				3							3		3	
	SDMT09T3ZDR-D57	М	4	9,5	3,97	15°	0,8	1,2														
	SDMT1204ZDR-D57	М	4	12,7	4,76	15°	0,8	1,8					*									

НС = твёрдый сплав с покрытием

Пластины квадратные с задними углами SDGT

Tiger-tec® Gold



Пластинь	bl																					
		ности	кромок								P HC				M HC			K HC			S HC	
	Обозначение	Класс точ	Кол-во режущих к	I MM	S MM	α	r MM	b MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WKP25S	WKP356	WKP35S	WSM35S	WSP45S	WSP456
	SDGT06T2PDR-D57	G	4	6,4	2,78	15°	0,4	1,2	•			33	*		3			*	3		*	3
	SDGT09T3PDR-D57	G	4	9,5	3,97	15°	0,8	1,2	3				*	8		18			*			33
	SDGT1204PDR-D57	G	4	12,7	4,76	15°	0,8	1,6	•										23			23

Пластины квадратные с задними углами SDMT / SDGT

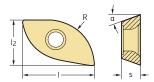
Tiger-tec® Gold

Пластины	ı																								
		ности	кромок								P HC				M HC				K			s IC			
	Обозначение	Класс точности	Кол-во режущих в	I MM	S MM	α	r MM	b	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSM45X	WSP455	WSF456	WKKZEC	WKR255	WKP356	WKP35S	WSM35S	WSM45X	WSP45S	WSP456
	SDMT09T3AZN-D57	М	4	9,5	3,97	15°	0,3	1,2	•	(3)		33	3	(3)	1	3	\$	•	9 (5	23	33			33	8 8
6	SDMT1204AZN-D57	М	4	12,7	4,76	15°	0,3	1,4	•	(3)	(3)	\$	33	(3)	1	§	\$ 6	9	9 🥰	33	33				
															+										
	SDMT09T3AZN-F57	М	4	9,5	3,97	15°	0,3	1,4	•		(2)	3	33		33 (8)	3	3	T	Œ	33	23		3	33	33
6	SDMT1204AZN-F57	М	4	12,7	4,76	15°	0,3	1,8	•		(3)		23			\$ (33			33	33	33
	SDGT09T3AZN-F57	G	4	9,5	3,97	15°	0,3	1,4	0			3					3	9	E	33	33			3	88
	SDGT1204AZN-F57	G	4	12,7	4,76	15°	0,3	1,8	③		(3)	23	33		•	\$ (\$ 6	9	E	33	33			3	23
																			+						
	SDGT09T3AZN-G77	G	4	9,5	3,97	15°	0,3	1,2				33	33		•	3	3							33	*
	SDGT1204AZN-G77	G	4	12,7	4,76	15°	0,3	1,4					23		1	\$	3							3	8 8
	-																								

НС = твёрдый сплав с покрытием

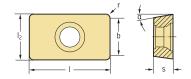
Пластины квадратные с задними углами SPMT

Tiger·tec® Gold


Пластинь	I																					
		точности	кромок							P HC		ı		M HC		ı	K H(S HC	
	Обозначение	Класс точ	Кол-во режущих г	I MM	S MM	α	r MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKP25S	WKP356		WSM35S	WSP45S	WSP456
	SPMT060304-F55	М	4	6,35	3,18	11°	0,4	®		(3)	3	*	(3)	33	1	®		33	33		33	
	SPMT09T308-F55	М	4	9,52	3,97	11°	0,8	•				33	#	33		0			33			
	SPMT120408-F55	М	4	12,7	4,76	11°	0,8	9				33		23	3	®			33			

Пластины профильные с задними углами XDMT

Tiger-tec® Gold

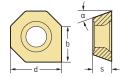


Пластинь	ıl																					
		_	¥								Р				М			K			S	
		точности	кромок								НС				НС			НС			НС	
	Обозначение	Класс точ	Кол-во режущих к	l ₂	I MM	S MM	α	R MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WKP25S	WKP356	WKP35S	WSM35S	WSP45S	WSP456
	XDMT1303080R-F55	М	2	8,5	13,12	3	15°	8	•			3	33	#	33	33	#	33	33			*
	XDMT16T3100R-F55	М	2	9	15,93	3,74	15°	10	•					(3)					3			
	XDMT2004125R-F55	М	2	11,3	19,94	4,68	15°	12,5	•				1			*						
	XDMT2405150R-F55	М	2	13,5	23,94	5,62	15°	15	•					(3)					3			
	XDMT2506160R-F55	М	2	14,4	25,54	6	15°	16	•			*	1	(3)	*				*			
	XDMT3207200R-F55	М	2	18	31,95	7,5	15°	20	•					(3)			(3)		33			
	XDMT4009250R-F55	М	2	22,5	39,95	9,39	15°	25	•					(4)					33	(3)		

НС = твёрдый сплав с покрытием

Пластины ромбические с задними углами BCGX

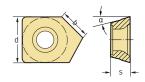
Tiger-tec®



Пластины																						
		CTM	кромок								P HC		N H			K HC			s IC	Н	1	O HC
	Обозначение	Класс точности	Кол-во режущих кр	I ₂	I MM	S MM	α	r MM	b	WKP25S	WKP35S	WSP45S	WSM35S	WSP45S	WAK15	WKP25S	WKP35S	WSM35S	WSP45S	WHH15		WXM15
	BCGX0903PDR-G55	G	2	6,3	10,3	3,21	7°	0,4	5						•					®	•	@
	BCGX1605PDR-G55	G	2	9,9	17,3	5,81	7°	0,8	8						3					③	②	③

Пластины с зачистными режущими кромками ODHX

Tiger-tec® Gold


Пластинь	ļ																					
		точности	к кромок						F	P IC	_	Н	С		K H(Н	5 IC 	H H	С	O HC
	Обозначение	Класс тс	Кол-во режущих I	d MM	S MM	α	b mm	WKP25S	WKP35G	WKP35S	WSP45S	WSM35S	WSP45S	\rightarrow	_	WKP356	WKP35S	WSM35S	WSP45S	$\overline{}$	_	WXM15
	ODHX0504ZZR-A57	Н	1	12,7	4,76	15°	7,2		•	®				8			®				®	
	ODHX0605ZZR-A57	Н	1	15,88	5,56	15°	9,4		•	9				3		®	•			®	9	
																					\dashv	
000	ODHX0605ZZN-A57	Н	8	15,88	5,56	15°	6							®						•	•	
1 8														\vdash							\dashv	
																					\exists	
	ODHX0605ZZN-A88	Н	8	15,88	5,56	15°	6							®						③	®	®
8																					-	

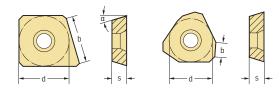
^{*} ZZN только для к = 45°

НС = твёрдый сплав с покрытием

Пластины квадратные с задними углами SDHX

Tiger-tec®

Пластины																			
		z	, X						Р		М		K			S	Н	.	0
		우	кромок						НС		HC		НС		Н	IC	Н	С	НС
	Обозначение	Класс точности	Кол-во режущих к	d MM	S MM	α	b MM	WKP25S	WKP35S	WSP45S	WSM35S	WSP455	WKP25S	WKP35S	WSM35S	WSP45S	WHH15	WHH15X	WXM15
	SDHX09T3AZR-A88	Н	1	9,52	3,97	15°	5,6					•					®	9	®
	SDHX1204AZR-A88	Н	1	12,7	4,76	15°	7,5					•					®	9	®


НС = твёрдый сплав с покрытием

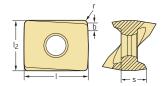
Пластины с зачистными режущими кромками P2901 / P2903 / P2905

Tiger-tec®

Пластины																				
		ЮСТИ	кромок						P HC		H		K		N HW		S IC	H	H IC	O HC
	Обозначение	Класс точности	Кол-во режущих к	d MM	S MM	α	b MM	WKP25S	WKP35S	WSP45S	WSM35S	WSP45S	WKP25S	WKP35S	WK10	WSM35S	WSP45S	WHH15	WHH15X	WXM15
	P2901-1R	Н	1	12,7	4,76	11°	11					•	9		49			®	③	®
	P2903-2R	A	3	9,52	4,76	11°	3,5					•	9		49			3	3	3
	P2905-1	F	4	12,7	4,76	11°	10					•	9		49			3	3	3

Пластины ромбические без задних углов ENMX

12


Tiger-tec® Gold

Пластины																											
		точности	кромок							P HC	ı			M HC				K HC			HC			S HC		H	
	Обозначение	Класс точ	Кол-во режущих н	I ₂	I MM	S MM	r MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X
	ENMX08T316R-D27	М	4	6	11	3,60	1,6	®	(3)	(2)	33	33	(2)	23	3		(4)	(3)	3	23			(4)	23	3	®	③
	ENMX08T316R-F47	М		6	11	3,60	1,6	6	<i>\$</i>	<i>\$</i>	56	50	49	23	50		49	<i>\$</i>	ÓĐ.	50			<i>5</i> 0	50	50	®	@
(6)	ENIMAUO1310K-F47	IVI	4	U	11	3,00	1,0	•	4	#	⇔	*	4	⇔	⇔		#	#	⇔	⇔			#	⇔	~>	•	•

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины ромбические без задних углов LNGX

Tiger-tec® Gold

Пластины																										
		чности	кромок							ı	P HC				M HC				K HC			HC	HW		S HC	
	Обозначение	Класс точ	Кол-во режущих к	l ₂	I MM	S MM	r MM	b	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456
	LNGX130708R-L55	G	4	11	13,7	7,74	0,8	1,2	®			*	*		3	33	39	(2)	29	3	3				3	23
	LNGX130712R-L55	G	4	11	13,7	7,74	1,2	1	•	(3)					3			(29						33	
	LNGX130716R-L55	G	4	11	13,7	7,74	1,6	0,9	®			(B)			33				29	3	3				33	
	LNGX130720R-L55	G	4	11	13,7	7,74	2	0,7	•	(4)					3			(29						33	
	LNGX130725R-L55	G	4	11	13,7	7,74	2,5	0,6	®										29	3	3					
	LNGX130730R-L55	G	4	11	13,7	7,74	3	0,7	®											3						

Пластины восьмигранные без задних углов ONHF

Tiger-tec® Silver

Пластины																									
		ИТ	кромок							0			М			K				۷		S		ŀ	
		точности									١,,	10	HC			Н			HC	HW		HC		Н	
	Обозначение	Класс т	Кол-во режущих	d MM	I MM	S MM	r MM	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X
	ONHF050408-F67	Н	16	12,7	5,26	4,76	0,8								®		(3)							•	©

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины трёхгранные без задних углов P23696

Tiger-tec® Gold

Пластины																								
		чности	кромок					1	P HC	ı	ı		M HC				K HC			HC	НW		S HC	
	Обозначение	Класс точ	Кол-во режущих н	d MM	S MM	r MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456
	P23696-1.0	М	6	9	5,31	1,2	0			33	\$		33	33			(3)	33	*			(2)	23	33
	P23696-2.0	М	6	13,5	7,41	1,6	•																	23

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

C 2

Пластины квадратные без задних углов SNGX / SNMX

Tiger-tec® Gold

Пластины	Г																						
		Класс точности	Кол-во режущих кромок		s	r	WKP25S	WKP356	WKP35S H 4	WSP45S	WSP456		WSP455 C N	WAK15	WKK25S	WKP25S H X	WKP35G	WKP35S		WK10 AH N		WSP45S H v	WSP456
	Обозначение	5	S e	мм	мм	ММ	⋛	⋛	⋛	×	š	≥ ≥	š š	Ž	⋛	_			ŝ	₹	š		
	SNGX120512-F57	G	8	12,7	5,60	1,2	®			33	33	(2)	3 🧱	;								33	33
And the second																							
	SNMX090408-F57	М	8	9,52	4,85	0,8	3	(3)			*	(2)	3 🕮	;	(3)	(3)	33	*			(2)	33	(3)
	SNMX120512-F57	М	8	12,7	5,50	1,2	•			33	33	(2)	3 🕱	;		(3)					(2)	33	23
	SNMX120520-F57	М	8	12,7	5,50	2	•				33	(2)	3 🗯	;			3	33			(2)	23	23
	SNMX160620-F57	М	8	16	6,38	2	•		(3)			8	§				33					23	
	SNMX160640-F57	М	8	16	6,38	4											3						
	SNMX090408-F67	М	8	9,52	4,87	0,8	•		(2)	33	33	(2)	3 🕱			49	33	33			(2)	23	23
	SNMX120512-F67	М	8	12,7	5,63	1,2	•					(2)		•			33					33	

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины квадратные без задних углов SNGX / SNMX

Tiger-tec® Gold

Пластинь	bl																						
	Обозначение	Кол-во режущих кромок	I MM	S	Ь	WKP25S	WKP356	WKP35S H 4	WSP45S	WSP456	WSM35S	WSP45S H M	WSP456	WAK15	WKK25S	WKP25S H X	WKP356	WKP35S	WXN15 H	WK10 AT 2	WSM35S	WSP45S H W	WSP45G
	SNGX0904ANN-F57	8	9,52	4,69	1,2		_	_	33	***		3		-			=	-	_	_	-	33	
	SNGX1205ANN-F57	8	12,7	5,54	1,5		_	_	_	_		-										33	_
	SNGX1606ANN-F57	8	16	6,3	1,8				33			33					33	33				33	
	SNGX0904ANN-F67	8	9,52	4,72	1,2	•			*	*		33	3	•		49	3	*				33	33
	SNGX1205ANN-F67	8	12,7	5,54	1,5	®			3				3	•			(8)				8		

Пластины квадратные без задних углов SNGX / SNMX

Tiger-tec® Gold

Пластины																				
	Обозначение	Кол-во режущих кромок	I MM	S MM	Ь	WKP25S	WKP35G	WKP35S H 4	WSP45S	WSP456	WSM35S H Z	:	WAK15	WKK25S	WKP25S H X	WKP356	WKP35S	WK10 AT 6	WSP45S H W	WSP456
	SNMX0904ANN-F57	8	9,52	4,69	1,2	•		(3)	33		ă	3		69	(3)	*	33			3
	SNMX1205ANN-F57	8	12,7	5,54	1,5	③	49	(3)						(3)	(5)	3	33			
									+											
	SNMX0904ANN-F67	8	9,52	4,72	1,2	•	(3)	(2)			ă	3	•		(3)	33	33		33	
	SNMX1205ANN-F67	8	12,7	5,54	1,5	•							•							

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины квадратные без задних углов SNGX

Tiger·tec® Gold

Пластины																							
		кромок						P HC				M HC				K HC				N HW		S HC	
	Обозначение	Кол-во режущих к	I MM	S MM	b мм	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456
	SNGX1205ENN-F57	8	12,7	5,61	1,2	•			33	*					(3)							33	33

Пластины квадратные без задних углов SNGX / SNMX

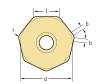
Tiger-tec® Gold

Пластинь	ı																						
		кромок					ı	P HC	ı	I		M HC				K HC	1		HC			S HC	
	Обозначение	Кол-во режущих кромок	I MM	S MM	b	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S		WSP456
	SNGX0904ZNN-F57	8	9,52	4,9	1	•			33								3	*				*	*
	SNGX1205ZNN-F57	8	12,7	5,77	1,2	•											3					*	
														+									
	SNGX0904ZNN-F67	8	9,52	4,93	1	•	(3)		33			23		0		(2)	3	3				*	*
	SNGX1205ZNN-F67	8	12,7	5,80	1,2	③	(3)	69	33	33	49	33	(3)	3		(2)	3	23			69	3	33
	SNMX0904ZNN-F57	8	9,52	4,91	1	•	(3)	(3)	33	33		33				(3)	3	\$				33	33
Control of the Contro																							
	CNIMAYOOO / ZNIMI ECZ	0	0.53	/ 02	1	(3)	AD	A	độ.	40	A	A	*		-	<u> </u>	40	40			₹	50	600
	SNMX0904ZNN-F67	8	9,52	4,93	1	®	49	4	**	₩	49	25	23	9		(29	선	#			49	#	#
-																							

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины трёхгранные без задних углов TNMU

Tiger-tec® Gold



Пластины																								
		точности	во щих кромок					55		P HC SS	55	56	ı	M HC 22	56	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	K HC SS			НС	нw	55	S HC	56
	Обозначение	Класс	Кол- режу	d MM	S MM	b MM	r MM	WKP25S	₩ WKP356	VKP35S	-	WSP456	_	-	WSP456	WKK25	_	₹ WKP35G	WKP35S	WXN15	WK10	WSM3		WSP456
3	TNMU160508R-G57	М	6	9,6	5,35	1,6	0,8	9	8	9	28	8		28 (25		49	23	***				23	**

Пластины семигранные без задних углов XNMU

Tiger·tec® Gold

Пластинь	I																									
		ОСТИ	кромок								P HC				M HC				K HC			HC	HW		S HC	
	Обозначение	Класс точн	Кол-во режущих к	d MM	I MM	S MM	r MM	Ь	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456
1	XNMU0705ANN-F57	М	14	14,5	6,98	5	0,8	1,1	•			33	33		33				*	33	33			(2)	,	
	XNMU0906ANN-F57	М	14	19,05	9,18	5,88	0,8	1,4	•											33	3					

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины семигранные без задних углов XNMU

Tiger-tec® Gold

Пластинь	I																								
		чности	кромок							P HC				M HC				K IC			N HC	l HW		S HC	
	Обозначение	Класс точн	Кол-во режущих к	d MM	I MM	S MM	r MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP255	WKP356	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456
1. 34	XNMU070508-F57	М	14	14,5	6,98	5	0,8	•			*	3	(3)	23			•	9 8	3 (1 3			(2)	,	
	XNMU090612-F57	М	14	19,05	9,18	5,88	1,2	3	49	49	23			23			•	9 8	\$ (13					

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

C 2

Пластины с зачистными режущими кромками SNEX

Tiger-tec®

Пластины																									
		точности	кромок						H	P IC			M HC			k H			HC			S HC		H	
	Обозначение	Класс точ	Кол-во режущих в	l MM	S MM	r MM	b	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X
)"07	SNEX1204PNR-B67	E	4	12,7	4,76	0,8	10,8								3									®	3

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины с зачистными режущими кромками SNEX

Tiger·tec®

Пластины																									
		_	¥						F	•			М			K			١	1		S		ŀ	ł
		точности	кромок						Н	C			HC			Н	C .		нс	нw		НС		Н	С
	Обозначение	Класс точ	Кол-во режущих к	I MM	S MM	r MM	b MM	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X
- AM	SNEX1204PNN-A27	Е	4	12,7	4,76	1,2	10,3								®									®	®
) A () 27 (

Пластины с зачистными режущими кромками XNGX

Tiger-tec®

Пластинь	I																								
		z	O. X					F	P			М			k	(١	1		S		H	4	0
		точности	кромок					Н	IC	ı		HC			Н	С		HC	HW		НС		Н	С	НС
	Обозначение	Класс точ	Кол-во режущих в	d MM	S MM	b MM	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X	WXM15
	XNGX0904ANN-F67	G	2	9,52	4,68	5								•									®	•	•
	XNGX1205ANN-F67	G	2	12,7	5,39	4,7								®									®	9	3

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины с зачистными режущими кромками XNGX

Tiger-tec®

Пластины																									
		ности	кромок						P IC			M HC			K			HC	HW		S HC		H		O HC
	Обозначение	Класс точнос	Кол-во режущих к	d MM	S MM	b MM	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X	WXM15
	XNGX1205ENN-F67	G	2	12,7	5,42	4,5								3									③	•	3

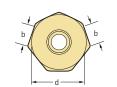
Пластины с зачистными режущими кромками **XNGX**

Tiger-tec®

Пластины																									
		z	A Y					ı	>			М			K			N	1		S		H	1	0
		точности	кромок					Н	IC			НС			Н	C ,		HC	HW		HC		Н	С	HC
	Обозначение	Класс точ	Кол-во режущих и	d MM	S MM	b MM	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X	WXM15
	XNGX0904ZNN-F67	G	2	9,52	4,83	3,5								8									®	®	®
	XNGX1205ZNN-F67	G	2	12,7	5,62	4								®									®	®	•

НС = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины с зачистными режущими кромками


Tiger ·tec	œ
-------------------	---

Пластинь	Γ																						
		точности	кромок						P IC	ı		M HC			H		HC			S HC		H	
	Обозначение	Класс точ	Кол-во режущих і	d MM	S MM	b mm	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X
0	XNHX0705ANN-D67	Н	2	14,5	4,97	5,8								®								•	®
	XNHX0906ANN-D67	Н	2	19,05	5,57	7,5								3								❷	3

НС = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины с зачистными режущими кромками **XNGX**

Tiger-tec®

Пластины																									
		ИТ	кромок					-				М			K			N 			S		ŀ		0
		точности					10	H ,				HC			HC		S	HC	HW		HC	(5)	Н		HC
		Класс т	Кол-во режущих	d	s	b	WKP25S	WKP35S	WSP45S	WSP45G	WSM35S	SP45S	WSP456	WAK15	WKK25S	KP25	/KP355	WXN15	WK10	WSM35S	WSP45S	/SP456	WHH15	/HH15X	WXM15
	Обозначение			1.75	ММ	MM	>	>	>	>	>	>	_	-	>	≥	≥	>	>	>	>	>	_	≥	
1000	XNGX0705ANN-F67	G	2	14,5	5	5,7								•		+	-						®	®	U

Пластины ромбические тангенциальные LNHU / LNMU

Tiger·tec® Gold

Пластині	bl																								
		чности	кромок							I	P HC	I			M HC		ı	K HC		I	HC			S HC	
	Обозначение	Класс точности	Кол-во режущих	I ₂	I MM	S MM	r MM	b	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WOR450	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456
10	LNHU090404R-L55T	Н	4	8,5	9	4,5	0,4	1,5	•							3	9	49	33	33			49		(3)
	LNHU090408R-L55T	Н	4	8,5	9	4,5	0,8	1,1	•			*	1			3	E	4	33	33			49		
	LNHU090412R-L55T	Н	4	8,5	9	4,5	1,2	0,8				33			3				23	33			(2)	33	
	LNHU090416R-L55T	Н	4	8,5	9	4,5	1,6					3			33				33	33			49	3	
	LNHU090420R-L55T	Н	4	8,5	9	4,5	2					33			3				23	33			(2)	33	
	LNHU130608R-L55T	Н	4	12	13	6,8	0,8	2,2	•			33	*		3	3	9	(4)	33	33			(2)	33	33
	LNHU130612R-L55T	Н	4	12	13	6,8	1,2	1,9				33	*		33	3			23	33			(2)	*	23
	LNHU130616R-L55T	Н	4	12	13	6,8	1,6	1,5				33				3			23	33			(2)		3
	LNHU130620R-L55T	Н	4	12	13	6,8	2	1,2				33			33	3			23	33			#	3	33
	LNHU130625R-L55T	Н	4	12	13	6,8	2,5	0,7				33			3				23	33			(2)	3	
	LNHU130630R-L55T	Н	4	12	13	6,8	3	2,3				33			33	3			23	33			#	3	33
	LNHU130632R-L55T	Н	4	12	13	6,8	3,2					33			3				23	33			(2)	3	
	LNHU160708R-L55T	Н	4	15,5	16	7,2	0,8	2,3	•			33			33	3	E		33	33			#	3	3
10	LNMU090404R-L55T	М	4	8,5	9	4,5	0,4	1,5	•		-	33	*		33 2	3	E			33				23	(3)
	LNMU130608R-L55T	М	4	12	13	6,8	0,8	2,2	•	(3)	_	3	3		33		E			33				3	ğ
	LNHU090404R-L65T	Н	4	8,5	9	4,5	0,4	1,5				33	3		23	3							-	3	3
	LNHU130608R-L65T	Н	4	12	13	6,8	0,8	2,2				3	*		33	3							- 1		3
	LNHU160708R-L65T	Н	4	15,5	16	7,2	0,8	2,3				33			3									23	

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины ромбические тангенциальные LNMX

Tiger·tec® Gold

Пластины																								
	Обозначение	Класс точности	Кол-во режущих кромок	I ₂	I MM	S MM	r MM	WKP25S	WKP356	WKP35S H 4	WSP45S	WSP456	1355	P4	WSP456	WKK25S	WKP255 H X	WKP356	WKP35S	WXN15 H	WK10 ₹ 2	1355	WSP45S H S	WSP456
	LNMX201012R-F57T	М	4	17,05	20	10	1,2	•			33		;	33	\$		(2)	33					1	

Пластины ромбические тангенциальные I NHX

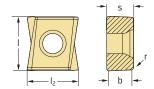
Tiger-tec® Gold

Пластины	I																								
		ности	кромок						H				H				K		ŀ	N HC	HW		S		
	Обозначение	Класс точі	Кол-во режущих к	l ₂	I MM	S MM	r MM	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSM45X	WSP45S	0 1	WAKID	WKK25S	WKP255	WKP355	WXN15	WK10	WSM35S	WSM45X	WSP45S	WSP456
0	LNHX120604R-L65T	Н	4	11	12,7	6,8	0,4									1							33	33	

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

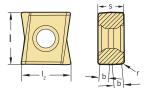
Пластины ромбические тангенциальные XNHX

Tiger-tec® Gold


Пластинь	ol																								
		точности	кромок							F				M H0				K HC			N HW	,	S		
	Обозначение	Класс точн	Кол-во режущих к	I ₂	I MM	S MM	r MM	b	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSM45X	WSP45S	WSP456	WANIS	WKP25S	WKP35S	WXN15	WK10	WSM35S	WSM45X	WSP45S	WSP456
	XNHX130608R-L65T	Н	2	10,5	14	6,8	0,8	2															33	33	3
	XNHX130612R-L65T	Н	2	10,5	14	6,8	1,2	2																33	
1	XNHX130616R-L65T	Н	2	10,5	14	6,8	1,6	2															33	33	33
	XNHX130620R-L65T	Н	2	10,5	14	6,8	2	2															33	33	
	XNHX130624R-L65T	Н	2	10,5	14	6,8	2,4	2															33	33	
	XNHX130630R-L65T	Н	2	10,5	14	6,8	3	1,4															33	33	
	XNHX130632R-L65T	Н	2	10,5	14	6,8	3,2	1,3															33		
	XNHX130640R-L65T	Н	2	10,5	14	6,8	4	0,5															33	33	

Пластины с зачистными режущими кромками LNHX

Tiger-tec®



Пластины																											
		<u>=</u>	MOK							F)			М			K			N	1		S		F	1	0
		ЧНОСІ	кроі							Н	C	ı	Ι,	HC			Н			HC	HW	ı	HC		Н	IC	HC
	Обозначение	Класс точ	Кол-во режущих в	I ₂	I MM	S MM	r MM	b mm	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	2	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X	WXM15
	LNHX0904PDR-L55T	Н	2	8,5	9	4,5	0,4	3,5								®									®	•	®
9	LNHX1306PDR-L55T	Н	2	12	13	6,8	0,6	5								®									®	3	•
R: -																											

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины с зачистными режущими кромками LNHX

Tiger-tec®

Пластины																											
		E	40K							F)			М			K			N			S		H	1	0
		чнос	кром							Н	С		Ι,	HC			Н	-		HC	HW		HC		Н	C	HC
	Обозначение	Класс точ	Кол-во режущих н	I ₂	I MM	S MM	r MM	Ь	WKP25S	WKP35S	WSP45S	WSP45G	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X	WXM15
120	LNHX130608R-L55T	Н	4	12	13	6,8	0,8	2,2								9									®	•	9

Пластины с зачистными режущими кромками Р45420

Tiger-tec®

Пластины																									
		ости	кромок					H	C			M HC			K			HC	HW I		S HC		H	- 1	O HC
	Обозначение	Класс точности	Кол-во режущих кр	d MM	S MM	b MM	WKP25S	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	22	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X	WXM15
	P45420-G67	Н	4	9,52	4,76	7								•									®	@	©

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Пластины с зачистными режущими кромками Р45424

Tiger-tec®

Пластинь	I																							
		точности	х кромок					H	P IC			M HC			H	c 		HC			S HC		Н	c
	Обозначение	Класс т	Кол-во режущи	d MM	S MM	b mm	WKP25S	WKP35S	WSP45S	WSP456	S3EMSM	WSP45S	WSP456	WAK15	WKK25S		WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X
1 000	P45424-1-G67	G	4	12	5	8								•									•	
	P45424-2-G67	G	4	20	6,5	15								•									®	9

Обзор программы фрез с пластинами

Фрезы для обработки уступов

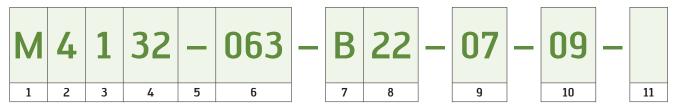
Вид обработки								
Угол в плане к	90°							
Обозначение	M5130 Xtra·tec® XT	M5137						
D _c [MM]	16-63							
D _c [дюйм]	0,625-2,480	2,000-4,000						
Стр.	216	222						
	100	N. A.						

Фрезы для обработки пазов

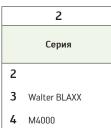
Вид обработки	
Угол в плане к	90°
Обозначение	M4791
D _C [MM]	
D _c [дюйм]	0,750-1,750
Стр.	224

Фрезы для профильной обработки

Вид обработки											
Угол в плане к											
Обозначение	F2239	F2239B	F2339								
D _C [MM]	20-32	20-40	16-32								
D _c [дюйм]	0,787-1,260	0,787-1,575	0,625-1,260								
Стр.	226	226	228								
	On All	GP IIII									


Фрезы для фасонной обработки

Вид обработки	
Угол в плане к	30° + 60°
Обозначение	M4574
D _c [MM]	8-20
D _c [дюйм]	0,750
Стр.	232

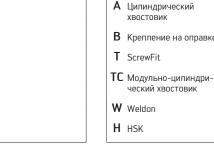


Система обозначений фрез Walter

Пример:

	-
	Назначение инструмента
М	Milling (фрезерование)

Xtra·tec® XT


	<u> </u>
	Тип инструмента
0	Фреза торцовая
1	Фреза для обработки

- уступов 2 Фреза для обработки уступов / пазов / длиннокромочная фреза 3 Другие фрезы
- 4 Фрезы для профильной обработки 5 Фреза для фасонной обработки
- 7 Фрезы для профильной обработки

5 1-й разделительный знак Метрические размеры . Дюймовые размеры

10
Глубина резания

	11							
	Исполнение							
S	Короткое исполнение Длинное исполнение							
D	Станки Dörries Scharmann							
М	Станки Makino							

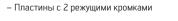
		4	
		Тип	
12	ELICTROVO JULIO TORLIOPLIO	32 Фрезы для обработки	

- 02 фрезы $\kappa = 15^{\circ}$, радиальные,
 - с задними углами, с 4 режущими кромками
- 03 Фрезы торцовые $\kappa = 45^{\circ}$, радиальные, с задними углами, с 4 режущими кромками
- **08** Фрезы быстроходные $\kappa = 17^{\circ}$, радиальные, двусторонние, с 4 режущими кромками
- 09 Фрезы торцовые к = 45°, радиальные, двусторонние, с 8 режущими кромками
- 12 Фрезы торцовые к = 88°, радиальные, двусторонние, с 8 режущими
- 16 Фрезы для тяжёлой обработки $\kappa = 60^\circ$, тангенциальные, двусторонние, с 4 режущими кромками
- 24 Фрезы торцовые с семигранными пластинами к = 45°, радиальные, двусторонние, с 14 режущими кромками, крепление винтом
- 25 Фрезы торцовые с мелким шагом с 8-гранными пластинами $\kappa = 42^{\circ}$, радиальные, двусторонние, с 16 режущими кромками, фрезы
- 26 Фрезы торцовые с мелким шагом с 8-гранными пластинами

для чистовой обработки

- к = 42°, радиальные, двусторонние, с 16 режущими кромками 30 Фрезы для обработки
- уступов к = 90°, радиальные,
 - с задними углами, с 2 режущими кромками
- 31 Фрезы для обработки с врезанием под углом $\kappa = 90^{\circ}$, радиальные,
- с задними углами, с 2 режущими кромками

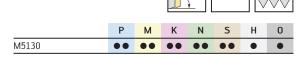
- уступов $\kappa = 89^{\circ}45'$, радиальные, с задними углами, с 4 режущими кромками
- 37 Фрезы для обработки уступов $\kappa = 90^{\circ}$, радиальные, двусторонние, с 6 режущими кромками
- **55** Фрезы длиннокромочные $\kappa = 90^{\circ}$, тангенциальные, двусторонние, с 2 или 4 режущими кромками
- 56 Фрезы длиннокромочные к = 90°, радиальные, с задними углами, с 2 или 4 режущими кромками
- 57 Фрезы длиннокромочные к = 90°, радиальные, с задними углами, с 2 или 4 режущими кромками
- 58 Фрезы длиннокромочные к = 90°, радиальные, с задними углами, с 2 или 4 режущими кромками
- 74 Фрезы для обработки фасок $\kappa = 30^{\circ}, 45^{\circ}, 60^{\circ},$ радиальные, с задними углами, с 4 режущими кромками
- 75 Фрезы для Т-образных пазов $\kappa = 90^{\circ}$, радиальные, с задними углами, с 4 режущими кромками
- 91 Фрезы для профильной обработки
 - к = 90°, радиальные,
 - с задними углами, с 4 режущими кромками
- 92 Фрезы для профильной обработки к = 90°, радиальные,
 - с задними углами, с 2 или 4 режущими кромками



Фрезы для обработки уступов

M5130 mm

BC .. 0903 .. R Xtra-tec® XT



Инструмент	Обозначение	D _c	d ₁ мм	l ₄	L _c	I ₁ мм	z	S kg	Кол-во пластин	Тип
ScrewFit	★ M5130-016-T14-02-09	16	T14	25	9		2	0,03	2	
	★ M5130-020-T18-02-09	20	T18	30	9		2	0,05	2	
	★ M5130-020-T18-03-09	20	T18	30	9		3	0,05	3	
	★ M5130-025-T22-03-09	25	T22	35	9		3	0,09	3	BC 0903 R
	★ M5130-025-T22-04-09	25	T22	35	9		4	0,09	4	
L _c	★ M5130-032-T28-04-09	32	T28	40	9		4	0,18	4	
14	★ M5130-032-T28-05-09	32	T28	40	9		5	0,19	5	
	★ M5130-016-TC08-02-09	16	M8	25	9		2	0,03	2	
	★ M5130-020-TC10-02-09	20	M10	30	9		2	0,05	2	
	★ M5130-020-TC10-03-09	20	M10	30	9		3	0,05	3	
D_{c}	★ M5130-025-TC12-03-09	25	M12	35	9		3	0,09	3	BC 0903 R
	★ M5130-025-TC12-04-09	25	M12	35	9		4	0,09	4	
→ L _c ←	★ M5130-032-TC16-04-09	32	M16	40	9		4	0,17	4	
◄	★ M5130-032-TC16-05-09	32	M16	40	9		5	0,18	5	
Хвостовик по DIN 1835 В	★ M5130-016-W16-02-09	16	16	41	9	90	2	0,12	2	
.	★ M5130-020-W20-03-09	20	20	39	9	90	3	0,18	3	DC 0003 D
	★ M5130-025-W25-04-09	25	25	43	9	100	4	0,31	4	BC 0903 R
D_{c}	★ M5130-032-W32-05-09	32	32	49	9	110	5	0,57	5	
+ -L _c										
14										
	★ M5130-016-A16-02-09	16	16	41	9	180	2	0,25	2	
+	★ M5130-018-A16-02-09	18	16	41	9	180	2	0,26	2	
D_{c} d ₁	★ M5130-020-A20-02-09	20	20	39	9	200	2	0,44	2	
	★ M5130-020-A20-03-09	20	20	39	9	200	3	0,44	3	BC 0903 R
'→ ← L _C	★ M5130-022-A20-03-09	22	20	39	9	200	3	0,44	3	
	★ M5130-025-A25-03-09	25	25	43	9	200	3	0,68	3	
	★ M5130-025-A25-04-09	25	25	43	9	200	4	0,68	4	

Сборочные детали	D _c [мм]	16–32
	Винт пластины Момент затяжки	FS2576 (Torx 8IP) 1.2 HM

Комплектующие	D _c [мм]	16–32
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4-1,2 HM
339	Рукоятка динамометрической отвёртки, цифровая Момент затяжки	FS2248 1,0-6,0 Нм
C	Вставка	FS2012 (Torx 8IP)
	Отвёртка	FS1483 (Torx 8IP)

Пластины																							
						Р				М				K			N		S		Н	1	0
						НС				НС			ŀ	IC		НС	HW		НС		Н	c	НС
	Обозначение	r MM	b MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X	WXM15
	BCGT090304R-G55	0,4	1,2	9							3	®		3	3 (%	Ì							
	BCGT090304R-K85	0,4	1,2													•							
	BCMT090302R-G55	0,2	1,4											\$	3 2	t							
	BCMT090304R-F55	0,4	1,2	3				*			3	@		3	3 2	t				1			
	BCMT090304R-G55	0,4	1,2	3				3			33	@		9 8	3 (2)	t				\$			
	BCMT090304R-K55	0,4	1,2		®	®		3	®		3			€				•		\$			
	BCMT090308R-G55	0,8	0,8					33			3			8	3 2	t				33			
	BCMT090312R-G55	1,2	0,4					3			3			8	3 2	t				33			
	BCMT090316R-G55	1,6	0,4								3			8	3 2	ţ				33			
	BCMT090320R-G55	2	0,4								3			8	3 (2)	t				33			
	BCGX0903PDR-G55	0,4	5									③									③	©	③

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Фрезы для обработки уступов

M5130 mm

BC .. 0903 .. R

Xtra-tec® XT

– Пластины с 2 режущими кромками

	Р	М	K	N	S	Н	0
M5130	••	••	••	••	••	•	•

Обозначение	D _c	d ₁	1 ₄	L _c	I ₁	z	∫ kg	Кол-во пластин	Тип
★ M5130-032-B16-03-09	32	16	40	9		3	0,12	3	
★ M5130-032-B16-06-09	32	16	40	9		6	0,12	6	
★ M5130-040-B16-04-09	40	16	40	9		4	0,19	4	
★ M5130-040-B16-07-09	40	16	40	9		7	0,21	7	BC 0903 R
★ M5130-050-B22-05-09	50	22	40	9		5	0,32	5	DC 0903 K
★ M5130-050-B22-08-09	50	22	40	9		8	0,34	8	
★ M5130-063-B22-07-09	63	22	40	9		7	0,50	7	
★ M5130-063-B22-11-09	63	22	40	9		11	0,51	11	
	 ★ M5130-032-B16-03-09 ★ M5130-032-B16-06-09 ★ M5130-040-B16-04-09 ★ M5130-040-B16-07-09 ★ M5130-050-B22-05-09 ★ M5130-050-B22-08-09 ★ M5130-063-B22-07-09 	Обозначение мм ★ M5130-032-B16-03-09 32 ★ M5130-032-B16-06-09 32 ★ M5130-040-B16-04-09 40 ★ M5130-040-B16-07-09 40 ★ M5130-050-B22-05-09 50 ★ M5130-063-B22-07-09 63	Обозначение мм мм ★ M5130-032-B16-03-09 32 16 ★ M5130-032-B16-06-09 32 16 ★ M5130-040-B16-04-09 40 16 ★ M5130-040-B16-07-09 40 16 ★ M5130-050-B22-05-09 50 22 ★ M5130-050-B22-08-09 50 22 ★ M5130-063-B22-07-09 63 22	Обозначение мм мм мм мм ★ M5130-032-B16-03-09 32 16 40 ★ M5130-032-B16-06-09 32 16 40 ★ M5130-040-B16-04-09 40 16 40 ★ M5130-040-B16-07-09 40 16 40 ★ M5130-050-B22-05-09 50 22 40 ★ M5130-050-B22-08-09 50 22 40 ★ M5130-063-B22-07-09 63 22 40	Обозначение мм мм	Обозначение мм мм	Обозначение мм мм	★ M5130-032-B16-03-09 32 16 40 9 3 0.12 ★ M5130-032-B16-06-09 32 16 40 9 6 0.12 ★ M5130-040-B16-04-09 40 16 40 9 4 0.19 ★ M5130-040-B16-07-09 40 16 40 9 7 0.21 ★ M5130-050-B22-05-09 50 22 40 9 5 0.32 ★ M5130-050-B22-08-09 50 22 40 9 8 0.34 ★ M5130-063-B22-07-09 63 22 40 9 7 0.50	★ M5130-032-B16-03-09 32 16 40 9 3 0.12 3 ★ M5130-032-B16-06-09 32 16 40 9 6 0.12 6 ★ M5130-040-B16-04-09 40 16 40 9 4 0.19 4 ★ M5130-040-B16-07-09 40 16 40 9 7 0.21 7 ★ M5130-050-B22-05-09 50 22 40 9 5 0.32 5 ★ M5130-050-B22-08-09 50 22 40 9 8 0.34 8 ★ M5130-063-B22-07-09 63 22 40 9 7 0.50 7

Сборочные детали	D _c [мм]	32–63
	Винт пластины Момент затяжки	FS2576 (Torx 8IP) 1,2 Hm

Комплектующие	D _c [мм]	32–63
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4-1,2 HM
383	Рукоятка динамометрической отвёртки, цифровая Момент затяжки	FS2248 1,0-6,0 Нм
	Вставка	FS2012 (Torx 8IP)
	Отвёртка	FS1483 (Torx 8IP)

Пластины																								
						Р				М				K			1	1		S		Н	1	0
						НС				НС				НС			нс	HW		НС		Н	с	НС
	Обозначение	r MM	b MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	WHH15X	WXM15
	BCGT090304R-G55	0,4	1,2	•				*			*	®			3	3					3			
	BCGT090304R-K85	0,4	1,2														•							
	BCMT090302R-G55	0,2	1,4					*			*				33	3					33			
	BCMT090304R-F55	0,4	1,2	•				*			*	®			33	3					3			
	BCMT090304R-G55	0,4	1,2	•				*			33	•			33						3			
	BCMT090304R-K55	0,4	1,2		•	•		*	3		*								•		3			
	BCMT090308R-G55	0,8	0,8					33								3					3			
	BCMT090312R-G55	1,2	0,4					*			*										*			
	BCMT090316R-G55	1,6	0,4					3								3					3			
	BCMT090320R-G55	2	0,4					*			*										3			
	BCGX0903PDR-G55	0,4	5									@										®	®	•
				LIC		<u>. </u>	Ų		D. C.															

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Фрезы для обработки уступов

M5130 inch

BC .. 0903 .. R Xtra-tec® XT

– Пластины с 2 режущими кромками

	Р	М	K	N	S	Н	0
M5130	••	••	••	••	••	•	•

Инструмент	Обозначение	D _c дюйм	d ₁ дюйм	I ₄ дюйм	I ₁ дюйм	L _c дюйм	Z	lbs	Кол-во пластин	Тип
Хвостовик по DIN 1835 B	★ M5130.015-W15-02-09	0,625	0,625	0,945	2,851	0,354	2	0,2	2	
+	★ M5130.019-W19-03-09	0,750	0,750	1,535	3,567	0,354	3	0,4	3	BC 0903 R
	★ M5130.026-W26-04-09	1,000	1,000	1,181	3,462	0,354	4	0,6	4	DC 0303 IX
D_c	★ M5130.026-W26-03-09	1,000	1,000	1,181	3,462	0,354	3	0,6	3	
1-L _c										
Цилиндрический хвостовик	★ M5130.015-A15-02-09	0,625	0,625	1,630		0,354	2	0,5	2	
1	★ M5130.019-A19-02-09	0,750	0,750	1,630		0,354	2	0,9	2	BC 0903 R
D_{c} d_{1}	★ M5130.026-A26-03-09	1,000	1,000	1,750		0,354	3	1,6	3	
1										
'→ ← Lc '										
Крепление на оправке DIN 138	★ M5130.051-B19-05-09	2,000	0,750	1,575		0,354	5	0,8	5	BC 0903 R
DIN 130	★ M5130.051-B19-08-09	2,000	0,750	1,575		0,354	8	0,8	8	DC 0303 IV
	-									
D_{c}										
→ L _c ←										
14										
									1	

Сборочные детали	D _c [дюйм]	0,625–1,000	2,000
	Винт пластины Момент затяжки	FS2576 (Torx 8IP) 1,2 Нм	FS2576 (Torx 8IP) 1,2 Нм
	Винт для инструментов с креплением на оправке		FS1523

Комплектующие	D _c [дюйм]	0,625–2,000
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Нм
333	Рукоятка динамометрической отвёртки, цифровая Момент затяжки	FS2248 1,0-6,0 Нм
	Вставка	FS2012 (Torx 8IP)
	Отвёртка	FS1483 (Torx 8IP)

Пластины																							
						Р				М				K			N		s		Н	1	0
						НС	1			НС			ŀ	IC		НС	HW		НС		н	С	НС
	Обозначение	r MM	b MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP35G	WXN15	WK10	WSM35S	WSP45S	WSP456	WHH15	МНН15X	WXM15
	BCGT090304R-G55	0,4	1,2	9					8			9	•	39 (13 S	3							
	BCGT090304R-K85	0,4	1,2													•							
	BCMT090302R-G55	0,2	1,4											1	3	3							
	BCMT090304R-F55	0,4	1,2	•							33	•		9	13 S	3							
	BCMT090304R-G55	0,4	1,2	3							33	•		9	13	3				33			
	BCMT090304R-K55	0,4	1,2		•	•			•		33			((4)	•		®		3			
	BCMT090308R-G55	0,8	0,8								33			1	13	3				33			
	BCMT090312R-G55	1,2	0,4								33			1	13 2	3				3			
	BCMT090316R-G55	1,6	0,4								33			1	3	3				3			
	BCMT090320R-G55	2	0,4								33			1	13 2	3				3			
	BCGX0903PDR-G55	0,4	5									®									③	③	3
				116		<u></u>	Ļ																

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Фрезы для обработки уступов

M5137 inch

TNMU160508R

– Пластины с 6 режущими кромками

				ŀ	<u> </u>	┙┕	
	Р	М	K	N	S	Н	0
M5137	••	••	••		••		

Инструмент	Обозначение	D _c дюйм	d ₁ дюйм	I ₄ дюйм	L _c дюйм	Z	lbs	Кол-во пластин	Тип
Крепление на оправке	★ M5137.051-B19-04-08	2,000	0,750	1,500	0,315	4	0,64	4	
DIN 138	★ M5137.064-B26-05-08	2,500	1,000	1,500	0,315	5	1,06	5	TNMU160508R
	★ M5137.076-B26-07-08	3,000	1,000	2,000	0,315	7	1,81	7	TIMMOTOUSUOK
D _c d ₁	★ M5137.102-B38-08-08	4,000	1,500	2,500	0,315	8	5,47	8	
1 ₄									

Сборочные детали	D _c [дюйм]	2,000-4,000
	Винт пластины Момент затяжки	FS2079 (Torx 9IP) 2.0 Hm

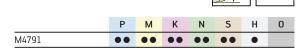
Комплектующие	D _c [дюйм]	2,000–4,000
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2004 1,5-5,0 Hm
335	Рукоятка динамометрической отвёртки, цифровая Момент затяжки	FS2248 1,0-6,0 Hm
	Вставка	FS2013 (Torx 9IP)
	Отвёртка	FS1484 (Torx 9IP)

Пластины																					
						Р				М				K			1	١		S	
						НС				НС				НС			нс	нw		НС	
	Обозначение	b мм	r MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSP45S	WSP456
	TNMU160508R-G57	1,6	0,8	•	(3)		*	\$		*	3				33	33				*	

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Фрезы для профильной обработки M4791 inch

– Пластины с 4 режущими кромками



Инструмент	Обозначение	D _c дюйм	d ₁ дюйм	I ₄ дюйм	I ₁ дюйм	L _c дюйм	Z	lbs	Кол-во пластин	Тип
Хвостовик по DIN 1835 В	M4791.019-W19-01-06	0,750	0,750	1,529	3,560	0,220	1	0,3	2	SD 06T204
	M4791.026-W26-01-09	1,000	1,000	2,844	5,125	0,331	1	0,9	2	SD 09T30
D_c	★ M4791.028-W19-01-09	1,125	0,750	1,250	3,310	0,331	1	0,3	2	20 09130
→ L _c ←	M4791.031-W31-01-12	1,250	1,250	3,219	5,500	0,457	1	1,4	2	
	★ M4791.035-W31-01-12	1,375	1,250	1,500	3,820	0,457	1	1,0	2	SD 120408
l1 I	M4791.038-W31-01-12	1,500	1,250	3,219	5,500	0,457	1	1,5	2	SD 120400
	★ M4791.044-W31-01-12	1,750	1,250	2,000	5,500	0,457	1	1,6	2	

	SD 120408
Винт пластины FS2084 (Torx 7IP) FS2266 (Torx 10IP) F Момент затяжки 0,9 Hм 2,0 Hм	S1453 (Torx 15IP) 3,5 Нм

Комплектующие	Тип	SD 06T204	SD 09T30	SD 120408
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2002 0,4-1,2 Hm	FS2004 1,5-5,0 Hm	FS2004 1,5–5,0 Hm
333	Рукоятка динамометрической отвёртки, цифровая Момент затяжки		FS2248 1,0-6,0 Hm	FS2248 1,0-6,0 Hm
	Вставка	FS2011 (Torx 7IP)	FS2268 (Torx 10IP)	FS2014 (Torx 15IP)
	Отвёртка	FS2088 (Torx 7IP)	FS2267 (Torx 10IP)	FS1485 (Torx 15IP)

Пластины																					
					Р				M	ı			K	(ı	N		9	5	
					НС				Н				Н	С		нс	HW		Н	С	
	Обозначение	r MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSM45X	WSP45S	WSP456	WAKID	WKK25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSM45X	WSP45S	WSP456
	SDHT06T204-G88	0,4														•					
	SDMT06T204-D51	0,4	0			33							€							*	
	SDMT06T204-D57	0,4	3									•	29 2	2	#						
	SDMT06T204-F57	0,4	0			33				33		9	2		33						
	SDMW06T204-A57	0,4											@	2	33						
	SDHT09T304-G88	0,4														•					
	SDHT09T308-G88	0,8														•					
	SDMT09T308-D51	0,8	•			33				23			@	23	33					3	
	SDMT09T308-D57	0,8	•			23	33			23		•	29 2	23	33					33	*
	SDMT09T308-F57	0,8	•			33				23		9	@	23	33				33	33	33
	SDMW09T308-A57	0,8		33	33								•	2	33						
	SDHT120408-G88	0,8														•					
	SDMT120408-D51	0,8	•			33	33			3			•	23	33					3	
	SDMT120408-D57	0,8	•							3		•	29 2	3	33					*	33
	SDMT120408-F57	0,8	•			33	33		23	23	3 (9	@	23	33				33	33	*
	SDMW120408-A57	0,8		33	33								@	3	3						

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Фрезы для профильной обработки

F2239 / F2239B mm

- Центральные и периферийные пластины Пластины с 3 или 4 режущими кромками

	Р	М	K	N	S	Н	0
F2239	••	•	••		•		
F2239B	••	•	••		•		

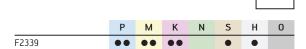
Инструмент	Обозначение	D _с мм	R MM	d ₁ мм	1 ₄	L _c	z	ر kg	Кол-во пластин	Тип
Модульно-цилиндрический	★ F2239.TC10.020.Z01.15	20	10	M10	30	15	1	0,0	1 2	SP 060304 P26315R10
D _c d ₁	★ F2239.TC12.025.Z01.18	25	12,5	M12	35	18	1	0,1	1 2	SP 060304 P26315R12
	★ F2239.TC16.030.Z01.23	30	15	M16	40	23	1	0,1	1 2	SP 09T308 P26315R15
R	★ F2239.TC16.032.Z01.24	32	16	M16	40	24	1	0,1	1 2	SP 09T308 P26315R16
Модульно-цилиндрический	★ F2239B.TC08.020.Z01.10	20	10	M8	25	15	1	0,0	3	P26315R10
	★ F2239B.TC10.025.Z01.12	25	12,5	M10	30	20	1	0,1	3	P26315R12
	★ F2239B.TC12.030.Z01.15	30	15	M12	40	24	1	0,1	3	P26315R15
D _c d ₁	★ F2239B.TC12.032.Z01.16	32	16	M12	40	26	1	0,1	3	P26315R16
	★ F2239B.TC16.040.Z01.20	40	20	M16	45	32	1	0,2	3	P26315R20
R L _c										

Сборочные детали	D _c [мм]	20	25	30-32	40
	Винт пластины	FS1129 (Torx 8)	FS923 (Torx 8)	FS359 (Torx 15)	FS1030 (Torx 20)
	Момент затяжки	0,8 Hm	1,2 HM	2,5 HM	5,0 Нм

Комплектующие	D _c [мм]	20-25	30-32	40
	Отвёртка для пластины	FS230 (Torx 8)	FS229 (Torx 15)	FS228 (Torx 20)

Пластины																								
)					М					(N			S		
	Обозначение	R MM	r MM	WKP25S	WKP35G	WKP35S ±	WSP45S	WSP45	WSP456	WSM35S	WSM35	WSP45S H	WSP45	WSP456	WAK15	WKP25S ±	WKP356	WKP35S	WXN15 H	WK10 A	WSM35S	WSP45S H	WSP45	WSP456
	P26315R10	10		•																				
	P26315R12	12,5		®								*												
	P26315R15	15		®		3												*						
	P26315R16	16		®		3	3					33												
	P26315R20	20		®		33	3					33						3						
	SPHT060304-G88		0,4																®	(2)				
	SPMT060304-D51		0,4	®				*				*	23									33		
	SPMT060304-F55		0,4	®		(4)	3	33		(4)	(3)	3	33	3	8		33	3				33	3	23
	SPMW060304-A57		0,4												8									
	SPMW060304T-A27		0,4			33												3						
	SPHT09T308-G88		0,8																®	(4)				
	SPMT09T308-D51		0,8	®		(4)	33	33			(3)	33	33					3				3	33	
	SPMT09T308-F55		0,8	•									3		®		3	_					33	*
	SPMW09T308-A57		0,8			33								_			-	33						
	SPMW09T308T-A27		0,8			33												33						

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия



Фрезы для профильной обработки

F2339 mm

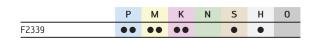
- Фиксатор против проворачивания пластин Пластины с 2 режущими кромками

Инструмент	Обозначение	D _c	R MM	d ₁ мм	1 ₄	L _c	Z	S kg	Кол-во пластин	Тип
Модульно-цилиндрический	★ F2339.TC08.016.Z02.11	16	8	M8	25	11	2	0,0	2	XD . T1303080R
	★ F2339.TC10.020.Z02.15	20	10	M10	30	15	2	0,0	2	XD . T16T3100R
D _C d ₁	★ F2339.TC12.025.Z02.20	25	12,5	M12	35	20	2	0,1	2	XD . T2004125R
	★ F2339.TC16.030.Z02.24	30	15	M16	40	24	2	0,1	2	XD . T2405150R
	★ F2339.TC16.032.Z02.25	32	16	M16	40	25	2	0,1	2	XD . T2506160R
R L _c										

Сборочные детали	D _c [мм]	16	20	25	30-32
	Винт пластины Момент затяжки	FS1454 (Torx 8IP) 1,2 Нм	FS1013 (Torx 8) 1,0 Hm	FS378 (Torx 15) 3,0 Hm	FS1165 (Torx 20) 6,0 Нм
Комплектующие	D _c [мм]	16	20	25	30-32
	Т-образный ключ				FS1173 (Torx 20)
	Отвёртка для пластины	FS1483 (Torx 8IP)	FS230 (Torx 8)	FS229 (Torx 15)	

Пластины НС HC НС НС WKP25S WKP356 WKP35S WSP456 WSM35S WKP25S WKP356 WSP45S WKP35S R Обозначение мм **(3)** * * XDGT1303080R-D57 8 **3 6 6 6 8 33 49 33** XDMT1303080R-F55 8 XDGT16T3100R-D57 10 **(3) 33** XDMT16T3100R-F55 10 **8 9 9 33 49 33 8 9 8 8 9 8** * XDGT2004125R-D57 **(4) 33** 12,5 XDMT2004125R-F55 12,5 **8 8 8 33 49 33 88888** XDGT2405150R-D57 15 **49 28** * **88888 8 9 9 8 69 88 89** XDMT2405150R-F55 15 * XDGT2506160R-D57 16 **49 33** XDMT2506160R-F55 **8888888888** 16 **88888888**

НС = твёрдый сплав с покрытием


Фрезы для профильной обработки

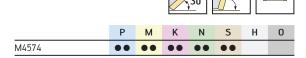
- Фиксатор против проворачивания пластин Пластины с 2 режущими кромками

Инструмент	Обозначение	D _c дюйм	R дюйм	d ₁ дюйм	I ₄ дюйм	L _c дюйм	z	lbs	Кол-во пластин	Тип
Модульно-цилиндрический	★ F2339.UTC08.015.Z02.11	0,625	0,313	M8	0,984	0,433	2	0,1	2	XDMT1303079R
	★ F2339.UTC10.019.Z02.15	0,750	0,375	M10	1,181	0,591	2	0,1	2	XD . T16T3095R
D _C d ₁	★ F2339.UTC12.026.Z02.20	1,000	0,500	M12	1,378	0,787	2	0,2	2	XD . T2004127R
	★ F2339.UTC16.031.Z02.25	1,250	0,625	M16	1,575	0,984	2	0,3	2	XD . T2506159R
R L _c										

Сборочные детали	D _c [дюйм]	0,625	0,750	1,000	1,250
	Винт пластины Момент затяжки	FS1454 (Torx 8IP) 1,2 HM	FS1013 (Torx 8) 1,0 Hm	FS378 (Torx 15) 3,0 Hm	FS1165 (Torx 20) 6,0 Hm
Комплектующие	D _c [дюйм]	0,625	0,750	1,000	1,250
	Ключ Т-образный для пластин				FS1173 (Torx 20)
	Отвёртка для пластины	FS1483 (Torx 8IP)	FS230 (Torx 8)	FS229 (Torx 15)	

Пластины													
				F)		N	Л		K		:	5
				Н	С		Н	С		НС		F	С
	Обозначение	R MM	WKP25S	WKP356	WKP35S	WSP45S	WSM35S	WSP45S	WKP25S	WKP356	WKP35S	WSM35S	WSP45S
	XDMT1303079R-F55	7,92	•	(3)		33		33		33	33	(3)	33
	XDGT16T3095R-D57	9,53						3			33		
	XDMT16T3095R-F55	9,53	•			33				33	33		
	XDGT2004127R-D57	12,7				33					33		3
	XDMT2004127R-F55	12,7	•			33				3	33		
	XDGT2506159R-D57	15,88				*					33		3
	XDMT2506159R-F55	15,88	•			\$				33	33		3

НС = твёрдый сплав с покрытием


Фрезы для обработки фасок

M4574 mm

– Пластины с 4 режущими кромками

Инструмент	Обозначение	D _с	D _a мм	d ₁ мм	1 ₄	l ₁	L _c	к	Z	ر kg	Кол-во пластин	Тип
Цилиндрический хвостовик	★ M4574-008-A12-01-03-30	8	18,4	12	30	120	2,7	30°	1	0,10	1	
D _c	★ M4574-012-A16-02-03-30	12	22,4	16	40	160	2,7	30°	2	0,23	2	SD 06T204
<u> </u>	★ M4574-016-A16-03-03-30	16	26,4	16	40	160	2,7	30°	3	0,24	3	
Da d1	★ M4574-020-A20-02-05-30*	20	35,3	20	40	200	4	30°	2	0,48	2	SD 09T308
K [°]												
Цилиндрический хвостовик	★ M4574-008-A12-01-03-60	8	14,3	12	30	120	4,8	60°	1	0,09	1	
D _c	★ M4574-012-A16-02-03-60	12	18,3	16	40	160	4,8	60°	2	0,22	2	SD 06T204
Da di	★ M4574-016-A16-03-03-60	16	22,3	16	40	160	4,8	60°	3	0,23	3	
Da d1	★ M4574-020-A20-02-05-60*	20	29,5	20	40	200	6,8	60°	2	0,46	2	SD 09T308
L _c ——												

Сборочные детали входят в комплект поставки * Без внутреннего подвода СОЖ

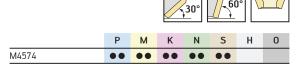
Сборочные детали	Тип	SD 06T204	SD 09T308
	Винт пластины	FS2084 (Torx 7IP)	FS2266 (Torx 10IP)
	Момент затяжки	0,9 Hm	2,0 HM

Комплектующие	Тип	SD 06T204	SD 09T308
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2001 0,4-1,2 Нм	FS2003 1,5–5,0 Нм
333	Рукоятка динамометрической отвёртки, цифровая Момент затяжки		FS2248 1,0-6,0 Нм
	Вставка	FS2011 (Torx 7IP)	FS2268 (Torx 10IP)
	Отвёртка	FS2088 (Torx 7IP)	FS2267 (Torx 10IP)

Пластины																						
					Р				N	1				K			N	1		5	5	
					НС				Н	C ,				HC			НС	HW		Н	IC	
	Обозначение	r MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSM45X	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSM45X	WSP45S	WSP456
	SDHT06T204-G88	0,4															®					
	SDMT06T204-D51	0,4	•			*				23	3				*						33	
	SDMT06T204-D57	0,4	•			33	3			3			(3)	(3)	33	3			(2)		33	33
	SDMT06T204-F57	0,4	•						3	3	3	•			33	33					33	
	SDMW06T204-A57	0,4		33										(3)	33	*						
	SDHT09T308-G88	0,8															®	(3)	П			
	SDMT09T308-D51	0,8	0			3				33	3				33	*					33	
	SDMT09T308-D57	0,8	•			33	33			3	3				33				(2)		23	
	SDMT09T308-F57	0,8	•			33						•			33	3					33	
	SDMW09T308-A57	0,8		3											*							

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Фрезы для обработки фасок


M4574 inch

SD .. 09T308

– Пластины с 4 режущими кромками

Инструмент	Обозначение	D _c дюйм	D _a дюйм	d ₁ дюйм	I ₄ дюйм	I ₁ дюйм	L _c дюйм	к	Z	lbs	Кол-во пластин	
Цилиндрический хвостовик	★ M4574.019-A19-02-05-30	0,750	1,353	0,750	1,575	7,874	0,157	30°	2	0,97	2	SD 09T308
D _c D _a D _a d ₁												
	★ M4574.019-A19-02-05-60	0,750	1,124	0,750	1,575	7,874	0,268	60°	2	0,93	2	SD 09T308
D _c D _a L _c 14												

Сборочные детали	D _c [дюйм]	0,750
	Винт пластины Момент затяжки	FS2266 (Torx 10IP) 2.0 HM

Комплектующие	D _c [дюйм]	0,750
	Рукоятка динамометрической отвёртки, аналоговая Момент затяжки	FS2003 1,5-5,0 Hm
339	Рукоятка динамометрической отвёртки, цифровая Момент затяжки	FS2248 1,0-6,0 Hm
	Вставка	FS2268 (Torx 10IP)
	Отвёртка	FS2267 (Torx 10IP)

Пластины																						
					Р				N	1				K			1	1		5	,	
					HC				Н	C .				HC			НС	HW		Н	C .	
	Обозначение	r MM	WKP25S	WKP356	WKP35S	WSP45S	WSP456	WSM35S	WSM45X	WSP45S	WSP456	WAK15	WKK25S	WKP25S	WKP356	WKP35S	WXN15	WK10	WSM35S	WSM45X	WSP45S	WSP456
	SDHT09T308-G88	0,8															•					
	SDMT09T308-D51	0,8	•	(3)		3	\$			23					3						33	
	SDMT09T308-D57	0,8	•	(3)		3				33			(3)								33	
	SDMT09T308-F57	0,8								23		•								*	33	
	SDMW09T308-A57	0,8			33										33	3						

HC = твёрдый сплав с покрытием HW = твёрдый сплав без покрытия

Режимы резания для черновой обработки WSP45G / WHH15X

	= режимы резания для обработки с СОЖ								Cn	лав	
	= возможна обработка без СОЖ								Cii	лав	
	- bosmowna dopado na des com									орость резания //мин]	
Группа материалов				Твёрдость по Бринеллю НВ	Предел прочности R _m H/мм²	Группа обрабатываемости ¹			Торцевое фр	НС резерование/ ние уступов	
ате	Основные гр	руппы материалов		2	H O	page			WSI	P45G	
ğ				L SC	린	190			a. /	D _c *	
Ę				jp 4c	еде	l lu	_ _	75		1	
宀				l B	급포	Ę		X	1/2	1/5	
		C ≤ 0,25 %	отожжённая	125	428	P1	•	••	230	290	
		C > 0,25 ≤ 0,55 %	отожжённая	190	639	P2	•	••	190	250	
	Нелегированная сталь	C > 0,25 ≤ 0,55 %	улучшенная	210	708	P3	•	••	180	230	
	пелегированная сталь	C > 0,55 %	отожжённая	190	639	P4	•	••	190	250	
		C > 0,55 %	улучшенная	300	1013	P5	•	••	130	125	
		автоматная сталь (сегментная стружка)	отожжённая	220	745	P6	•	••	175	225	
_		отожжённая		175	591	P7	•	••	190	240	
Р	Низколегированная сталь	улучшенная		300	1013	P8	•	••	130	145	
		улучшенная		380	1282	P9	•	••	100	110	
		улучшенная		430	1477	P10	•	••	80	90	
	Высоколегированная сталь	закалённая и отпущенная		200 300	675 1013	P11 P12	•	••	115 75	140 90	
	и высоколегированная инструментальная сталь	закаленная и отпущенная		400	1361	P12	•	••	65	80	
		ферритная / мартенситная, отожжённая		200	675	P14	•	••	115	140	
	Нержавеющая сталь	мартенситная, улучшенная		330	1114	P15	•	••	80	100	
		аустенитная, закалённая		200	675	M1	••	•	110	130	
М	Нержавеющая сталь	аустенитная, дисперсионно-твердеющая	ı (PH)	300	1013	M2	••	•	90	100	
		аустенитно-ферритная, дуплексная		230	778	М3	••	•	100	120	
		ферритный		200	675	K1	•	••			
	Ковкий литейный чугун	перлитный		260	867	K2	•	••			
	Серый чугун (СЧ)	с низким пределом прочности		180	602	K3	•	••			
K	серый чугун (с т/	с высоким пределом прочности / аустен	итный	245	825	K4	•	••			
	Высокопрочный чугун	ферритный		155	518	K5	•	••			
		перлитный		265	885	K6	•	••			
	Вермикулярный чугун (ЧВГ)			200	675	K7	•	••			
	Алюминиевые ковкие сплавы	не упрочняемые термической обработко		30	- 2/2	N1	••				
		упрочняемые термической обработкой, у ≤ 12 % Si, не упрочняемые термической		100 75	343	N2 N3	••				
	Алюминиевые литейные сплавы	≤ 12 % Si, не упрочняемые термической ≤ 12 % Si, упрочняемые, упрочнённые	оораооткои	90	260 314	N4	••				
	Алюмипиевые литеиные сплавы	> 12 % Si, не упрочняемые термической	обработкой	130	447	N5	••				
N	Магниевые сплавы ³	TE 70 BI, THE YINDS INVISIONED TOPININ TOURISM	оорасотной	70	250	N6	••				
		нелегированная, электролитическая ме,	ДЬ	100	343	N7	••				
	Медь и медные сплавы	латунь, бронза, красная латунь		90	314	N8	••				
	(бронза/латунь)	медные сплавы, дающие сегментную ст	 ружку	110	382	N9	••				
		высокопрочные сплавы Cu-Al-Fe		300	1013	N10	••				
		на основе Fe	отожжённые	200	675	S1	••		65	70	
		THE SCHOOL I E	упрочнённые	280	943	52	••		45	50	
	Жаропрочные сплавы		отожжённые	250	839	S3	••		50	55	
		на основе Ni или Co	упрочнённые	350	1177	S4	••		30	35	
S			литейные	320	1076	S5	••		40	45	
	T	чистый титан		200	675	S6	••		65	70	
	Титановые сплавы	а- и β-сплавы, упрочнённые		375 410	1262 1396	S7 S8	••		30 30	35 35	
	Вольфрамовые сплавы	β-сплавы		300	1013	59	••		70	80	
	Молибденовые сплавы			300	1013	S10	••		70	80	
	,,	закалённая и отпущенная		50 HRC	-	H1		••		30	
	Закалённая сталь	закалённая и отпущенная		55 HRC	-	H2		••			
Н		закалённая и отпущенная		60 HRC	-	Н3		••			
	Закалённый чугун	закалённый и отпущенный		55 HRC	-	H4		••			
	Термопласты	без абразивных включений				01	••	•	400	400	
	Реактопласты	без абразивных включений				02	••	•	300	300	
0	Пластмассы, армированные стекловолокном	GFRP				03					
	Пластмассы, армированные углеволокном	CFRP				04					
	Пластмассы, армированные арамидным волокном Графит (технический)	AFRP		80 по Шору		05 06					
								••			

- Рекомендуемая область применения (указанные режимы резания являются начальными значениями для данной области)
 Возможная область применения, режимы резания уменьшить на 30–50 % (для ISO М повысить прим. на 70–80 %)

 $^{^1}$ Классификацию по группам обрабатываемости см. на стр. С 671 в Общем каталоге Walter 2017. 2 Возможно назначать данные режимы резания при обработке без СОЖ. * $a_{\rm e}/D_{\rm c}=1/10,\,v_{\rm c}=10$ % выше, чем 1/5 3 При обработке магниевых сплавов не использовать смешиваемую с водой СОЖ.

В таблице указаны рекомендуемые значения. В особых случаях необходима корректировка скорости резания.

Сплав

Начальная скорость резания $v_c \, [\text{м/мин}]$

фрезер	јевое ование/ ние уступов	длиннокр фрезами	ние уступов омочными с полным ным зубом	длиннокр фрезами с	ние уступов омочными шахматным нием зубьев		ование нтовой		ание пазов и фрезами		Проф	ильное (фрезеро	вание	
WHI	H15X		945G	1 -	P45G	WSF	45G	WSF	45G		WSP45G			WWH15	(
a _e /	D _c *	a _e /	D _c *	a _e /	D _c *	a _e /	D _c *	a _e /	/ D _c		a _e / D _c			a _e / D _c	
1/1 1/2	1/5	1/2	1/5	1/1 1/2	1/5	1/1 1/2	1/5	1/4*	1/10	1/1	1/5	1/10	1/1 1/2	1/5	1/20
170	215	185	230	185	230	210	260	185	230	230	290	365	170	225	305
150	195	150	200	150	200	170	220	150	200	190	250	315	150	200	270
120	155	130	165	130	165	160	210	135	170	155	200	250	120	160	220
105	140	150	200	150	200	170	220	135	170	145	170	215	105	140	190
80 120	100 155	105 125	115 160	105 125	115 160	120 160	130 210	105 140	125 180	130 190	145 250	180 115	80 120	105 160	145 220
140	175	150	190	150	190	170	210	150	190	190	240	300	140	185	250
110	125	105	115	105	115	125	150	105	115	145	170	215	120	160	220
110	120	60	70	60	70	85	95	75	85	130	145	180	110	150	200
110	125	60	70	50	60	60	65	65	75	100	110	140	105	140	190
		90	110	90	110	100	130	90	110	115	140	175	105	140	190
		65	70	65	70	75	90	60 EE	70	75	90	115	100	130	180
		60 90	70 110	50 90	60 110	65 100	75 120	55 90	65 110	65 115	80 140	100 175	80 120	100 160	140 220
		60	70	60	70	55	65	60	80	90	110	140	100	130	180
		85	100	85	100	90	100	85	100	110	130	165	130	130	100
		70	80	75	90	70	80	70	85	90	110	140			
		75	90	75	90	80	90	75	90	100	120	150			
105	125												105	140	190
90	110												90	120	160
110	120												110	150	200
90	105 120			<u> </u>									90 110	120 150	160 200
90	105												90	130	180
80	100												80	110	150
		50	55	50	55	60	65	55	60	65	70	90			
		35	40	35	40	40	45	40	45	45	50	65			
		40	45	40	45	45	50	45	50	50	55	70			
		25 30	30 35	25 30	30 35	25 35	30 40	30 35	35 40	30 40	35 45	45 55			
		50	65	50	65	65	80	55	60	65	80	100			
		30	35	30	35	40	45	30	35	40	45	55			
		25	30	25	30	35	40	25	30	35	40	50			
		30	35	30	35	40	45	30	35	40	45	55			
		25	30	25	30	35	40	25	30	40	45	55			
50	60												50	65	85
35	45												35	50	70
40	50												35 40	45 55	60 80
700	400	400	400	400	400	400	400	400	400	500	600	700	700	800	900
600	600	300	300	300	300	300	300	300	300	400	500	600	600	700	800
600	600												600	700	800

Режимы резания для получистовой и чистовой обработки WSP45G / WHH15X

	= возможна обработка без СОЖ										_			
алов											Спл	авы		
алов				H 9 H 9		TNT.				Началь	ная ско v _c [м/		езания	1
Группа материалов	Основны	е группы материалов		Твёрдость по Бринеллю НВ	Предел прочности R _m H/мм²	Группа обрабатываемости				WSP450	льное (\	WHH15	
Групп				Твёрдс	Предел Н/мм²	Группа	=₹	- ₹	1/1	a _e / D _c *		1/1 1/2	a _e / D _c * 1/5	1/20
		C ≤ 0,25 % C > 0,25 ≤ 0,55 %	отожжённая отожжённая	125 190	430 640	P1 P2	•	••	345 285	435 375	545 470	210 190	280 250	380 340
1	Нелегированная сталь	C > 0,25 ≤ 0,55 % C > 0,55 % C > 0,55 %	улучшенная отожжённая улучшенная	210 190 300	710 640 1010	P3 P4 P5	•	••	235 220 195	300 255 220	375 320 270	150 130 100	200 170 130	270 235 180
_		автоматная сталь (сегментная стружка) отожжённая	отожжённая	220 175	750 590	P6 P7	•	••	290 285	380 360	470 450	180 170	240 230	330 310
P	Низколегированная сталь	улучшенная улучшенная улучшенная		285 380 430	960 1280 1480	P8 P9 P10	•	••	220 195 150	255 220 165	320 270 205	150 140 130	200 190 170	270 250 235
ı	Высоколегированная сталь и высоколегированная инструментальная сталь	отожжённая закалённая и отпущенная		200 300 380	680 1010 1280	P11 P12 P13	•	••	175 115 110	210 135 130	265 170 150	130 120 110	170 160 150	235 220 210
	Нержавеющая сталь	закалённая и отпущенная ферритная / мартенситная, отожжённая мартенситная, улучшенная		200 330	680 1110	P13 P14 P15	•	••	175 135	210 160	260 205	150 120	200	270 270 220
M	Нержавеющая сталь	аустенитная, закалённая аустенитная, дисперсионно-твердеющая (аустенитно-ферритная, дуплексная	(PH)	300 230	680 1010 780	M1 M2 M3	••	•	165 130 150	195 160 180	245 210 230			
	Ковкий литейный чугун	ферритный перлитный		200	400 700	K1 K2	•	••				130 110	170 150	235
	Серый чугун (СЧ)	с низким пределом прочности с высоким пределом прочности / аустени ферритный	тный	180 245 155	350 400	K3 K4 K5	•	••				140 110 140	190 150 190	250 200 250
<u> </u>	Высокопрочный чугун Вермикулярный чугун (ЧВГ)	перлитный		265 230	700 400	K6 K7	•	••				120 110	160 150	220
,	Алюминиевые ковкие сплавы	не упрочняемые термической обработкой упрочняемые термической обработкой, уп	рочнённые	30 100	340	N1 N2	••							
	Алюминиевые литейные сплавы	≤ 12 % Si, не упрочняемые термической обрабов ≤ 12 % Si, упрочняемые термической обработк > 12 % Si, не упрочняемые термической обрабова.	ой, упрочнённые	75 90 130	260 310 450	N3 N4 N5	••							
N	Магниевые сплавы ²	нелегированная, электролитическая меды		70 100	250 340	N6 N7	••²							
	Медь и медные сплавы (бронза/латунь)	латунь, бронза, красная латунь медные сплавы, дающие сегментную стру		90 110	310 380	N8 N9	••							
		высокопрочные сплавы Cu-Al-Fe на основе Fe	отожжённые упрочнённые	300 200 280	1010 680 940	N10 S1 S2	••		100 70	105 75	130 95			
	Жаропрочные сплавы	на основе Ni или Co	отожжённые упрочнённые литейные	250 350 320	840 1180 1080	S3 S4 S5	••		75 45 60	85 55 70	70 90			
S	Титановые сплавы	чистый титан α- и β-сплавы, упрочнённые β-сплавы		200 375 410	680 1260 1400	S6 S7 S8	••		100 60 50	120 70 60	150 90 80			
—	Вольфрамовые сплавы Молибденовые сплавы	F300		300 300	1010 1010	S9 S10	••		70 70	80	100			
н	Закалённая сталь	закалённая и отпущенная закалённая и отпущенная закалённая и отпущенная		50 HRC 55 HRC 60 HRC	- -	H1 H2 H3		••				60 40 40	80 50 45	110 70 60
	Закалённый чугун	закалённый и отпущенный 5			-	H4		••	EFO	CEO	750	50	70	90
1	Термопласты Реактопласты Пластмассы, армированные стекловолокном	без абразивных включений без абразивных включений GFRP				01 02 03	••	•	550 450	550 550	750 650	700	900 800	900
1	Пластмассы, армированные углеволокном Пластмассы, армированные арамидным волокном Графит (технический)	CFRP AFRP	80 по Шору		04 05 06		••				700	800	1000	

Рекомендуемая область применения (указанные режимы резания являются начальными значениями для данной области)
 Возможная область применения, режимы резания уменьшить на 30–50 % (для ISO М повысить прим. на 70–80 %)

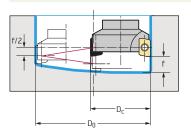
 $^{^1}$ Классификацию по группам обрабатываемости см. на стр. С 671 в Общем каталоге Walter 2017. 2 При обработке магниевых сплавов не использовать смешиваемую с водой СОЖ. * $a_e/D_c=1/50, v_c=40\,$ % выше, чем 1/20

Рекомендации по выбору подачи (начальные значения)

В таблице указаны рекомендуемые значения. В особых случаях необходима корректировка скорости резания.

	Тип фрезы	M5130		M4574	
	Подача на зуб f_{Z0} для $a_{\rm e} = D_{\rm c}$				
Группа материалов	$a_p = a_{p \text{ max}} = L_c$	Фрезерование уступов			
атер	Угол в плане к	90°		30° / 45° / 60°	
la Mé		f _{Z0} [мм]		f _{Z0} [мм]	
руп	Ø фрезы или диапазон Ø [мм]	16-50	12-16	20-40	32-40
	Макс. глубина резания а _{р max} = L _c [мм]	9,0	3	5	7
	Нелегированная сталь ¹	0,16	0,15	0,20	0,25
Р	Низколегированная сталь	0,11	0,12	0,15	0,20
_	Высоколегированная и инструментальная сталь	0,11	0,12	0,15	0,20
	Нержавеющая сталь	0,08	0,10	0,12	0,15
М	Нержавеющая сталь ²	0,08	0,08	0,10	0,12
	Ковкий литейный чугун	0,13	0,15	0,20	0,25
Κ	Серый чугун (СЧ)	0,16	0,20	0,25	0,30
.,	Высокопрочный чугун	0,13	0,15	0,20	0,25
	Вермикулярный чугун (ЧВГ)	0,11	0,15	0,20	0,25
	Алюминиевые ковкие сплавы	0,11	0,10	0,12	0,15
N	Алюминиевые литейные сплавы	0,13	0,10	0,12	0,15
	Магниевые сплавы	0,11	0,08	0,10	0,12
	Медь и медные сплавы (бронза/латунь)	0,08	0,08	0,10	0,12
	Жаропрочные сплавы	0,08	0,08	0,10	0,12
S	Титановые сплавы	0,08	0,08	0,10	0,12
3	Вольфрамовые сплавы	0,08	0,08	0,10	0,12
	Молибденовые сплавы	0,08	0,08	0,10	0,12
Н	Закалённая сталь	0,08			
-"	Закалённый чугун	0,11			
	Термопласты	0,13	0,10	0,12	0,15
0	Пластмассы, армированные углеволокном				0,15
	Графит (технический)	0,11	0,10	0,12	0,15
Типы	пластин	BC0903	SD06T2	SD09T3	SD1204
Попп	авочный коэффициент $\mathbf{Ka_e}$ $\mathbf{a_e} \ / \ \mathbf{D_C} = \ 1/1 - 1/2$	1,0	1,0	1,0	1,0
попр	авочный коэффициент $\mathbf{Ka_e}$ $\mathbf{a_e} \ / \ \mathbf{D_c} = \frac{1/1 - 1/2}{1/5}$	1,0	1,1	1,1	1,1
для г	юдачи на зуб в зависимости 1/10	1,1	1,1	1,1	1,1
от от	ношения ширины резания ае	1,3	1,3	1,3	1,3
к диа	метру фрезы D _c 1/20 1/50	1,3		1,5	1,5
	1/30		1,5	1,5	1,3

 $^{^{1}}$ и литьё 2 и аустенитная / ферритная * только если $a_{p} < 0.75 \times D_{c}$ ** только если $a_{e}/D_{c} < 1/5$



Рекомендации по применению фрезы Xtra·tec® XT M5130 для обработки уступов

Фрезерование с врезанием под и обработка по винтовой интер в сплошном материале	углом поляции	Фрезерование с врезанием под углом фрезой Xtra·tec® XT M5130 для обработки уступов / угол врезания E _{max} [°]								
	Ø фрезы			1903 = 9 мм						
lo lo le	D _с [мм]	E _{max} [°]	D _{0 min} [мм]	D _{0 max} [мм]	а ₀ [мм]					
	16	8,4	20,2	32	1,2					
, 1	18	6,7	24,2	36	1,2					
	20	5,4	28,2	40	1,1					
	22	4,6	32,2	44	1,1					
a ₂ ≤ a _{max}	25	3,8	38,2	50	1,1					
a ₀ † †	32	2,6	52,2	64	1,1					
	40	2,0	68,2	80	1,1					
	50	1,6	88,2	100	1,1					
	63	1,2	114,2	126	1,1					
a ₀ ↓ O E ↓ a _n			$a_{p max} = 0$,354 дюйм						
	D _c [дюйм]	E _{max} [°]	D _{0 min} [дюйм]	D _{0 max} [дюйм]	а ₀ [дюйм]					
	0,625	8,5	0,785	1,250	0,047					
	0,750	6,1	1,035	1,500	0,047					
	1,000	3,7	1,535	2,000	0,043	·				
	2,000	1,5	3,535	4,000	0,043					

Винтовая интерполяция в сплошном материале

Макс. осевая подача на оборот инструмента («шаг») f [мм]

Диаметр обраб. отверстия							1903 мм]			
D ₀ [мм]	16	18	20	25	32	40	50	63		
25	3,0	1,5								
30	6,1	4,0	1,5							
40	8,8	8,2	5,5	1,7						
50	8,8	8,8	8,2	5,0						
60	8,8	8,8	8,8	6,5	3,5					
70	8,8	8,8	8,8	8,8	5,5	1,5				
80	8,8	8,8	8,8	8,8	7,5	4,0				
90	8,8	8,8	8,8	8,8	8,8	5,5	1,5			
100	8,8	8,8	8,8	8,8	8,8	6,7	3,8			
120	8,8	8,8	8,8	8,8	8,8	8,8	6,0	3,0		
150	8,8	8,8	8,8	8,8	8,8	8,8	8,8	5,5		
180	8,8	8,8	8,8	8,8	8,8	8,8	8,8	7,5		
200	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8		
250	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8		

Макс. осевая подача на оборот инструмента («шаг») f [дюйм]

Диаметр обраб. отверстия							1903 юйм]			
D ₀ [дюйм]	0,625	0,750	1,000	1,250	1,500	2,000				
0,984	0,110									
1,181	0,240	0,590								
1,575	0,346	0,215	0,066							
1,969	0,346	0,322	0,190							
2,362	0,346	0,346	0,255	0,135						
2,756	0,346	0,346	0,346	0,215	0,055					
3,150	0,346	0,346	0,346	0,295	0,155					
3,543	0,346	0,346	0,346	0,346	0,215	0,055				
3,937	0,346	0,346	0,346	0,346	0,261	0,145				
4,724	0,346	0,346	0,346	0,346	0,346	0,235				
5,906	0,346	0,346	0,346	0,346	0,346	0,346				
7,087	0,346	0,346	0,346	0,346	0,346	0,346				
7,874	0,346	0,346	0,346	0,346	0,346	0,346				
9,843	0,346	0,346	0,346	0,346	0,346	0,346				

Рекомендации по высокоскоростной обработке

- Максимально допустимая частота вращения. Запрещается превышать указанные в таблицах предельные значения оборотов шпинделя. В противном случае это может повлиять на функционирование и/или надёжность работы инструмента.
- 2. Следует использовать только оригинальные пластины и сборочные детали Walter (винты и т. д.). После пяти замен пластин необходимо установить новые винты.
- 3. Соблюдайте моменты затяжки, указанные в каталоге.
- 4. Балансировка.
 - При обработке с повышенной частотой вращения (> 6 000) или скоростью резания > 1 000 м/мин требуется двухступенчатая балансировка: а. Основная балансировка корпуса инструмента, включая пластины (выполняется компанией Walter по запросу). При её выполнении следует использовать предварительно отбалансированные базовые держатели.
 - b. Точная балансировка режущего инструмента в сборе с оснасткой. Операция точной балансировки является обязательной, поскольку даже малейшее радиальное биение может значительно повлиять на класс балансировки.
- 5. Минимальный вылет инструмента: при уменьшении радиальных биений и дисбаланса увеличивается срок службы шпинделя. Указанные значения частоты вращения относятся только к применению инструментов без дополнительных удлинителей, а также инструментов с длиной шейки ≤ 2,2 × D_C. Для инструментов с увеличенной длиной шейки следует уменьшить частоту вращения по согласованию с компанией Walter.

Часть 1. Метрические размеры

		n _{max} [об/мин] при D												
Инструмент	Важные компоненты безопасности	Относится к	Ø 10	Ø 12	Ø 14	Ø 16	Ø 18	Ø 20	Ø 22	Ø 25	Ø 28	Ø 32	Ø 35	
	AC.T0602	D _c	40.000	40.000	40.000	40.000	40.000	40.000	40.000	40.000		36.600		
ME120	BC0903	D _c				40.000	40.000	40.000	38.700	36.000		31.300		
M5130	BC.T1204	D _c								28.100		24.400		
	BC.T1605	D _c								22.300	20.900	19.300	18.300	

Часть 2. Дюймовые размеры

		n _{max} [об/мин] при D								
Инструмент	Важные компоненты безопасности	Относится к	Ø 0,375	Ø 0,5	Ø 0,625	Ø 0,750	Ø 1,000	Ø 1,250	Ø 1,500	
	AC.T0602	D _c		40,000	40,000	40,000	40,000	36,800	33,400	
M5130	BC0903	D _c			40,000	40,000	35,700			
MOTOR	BC.T1204	D _c				33,100	27,900	24,500	22,100	
	BC.T1605	D _c					22,100	19,300	17,400	

- 6. Защитные кожухи. Соответствующие кожухи должны использоваться для защиты от стружки или отколовшихся режущих элементов.
- Повреждённые инструменты.
 При восстановлении инструментов для высокоскоростной обработки следует указывать рабочую частоту вращения. Табличные значения относятся только к тем инструментам, которые после восстановления соответствуют состоянию нового инструмента.
- 8. Используемые стандарты.

Walter рекомендует применять стандарт балансировки DIN 69888, который содержит описание балансировки инструментов и требования к балансировке при обработке резанием.

Стандарт DIN 69888 соответствует требованиям при обработке резанием и содержит требования к балансировке инструментов, изложенные в доступной форме. В отличие от него, в стандарте DIN ISO 1940, который использовался ранее, балансировка описана с учётом требований, действующих в отрасли машиностроения в целом.

Требования при обработке со скоростью резания > 1 000 м/мин изложены в стандарте DIN ISO 15641.

n _{max} [об/мин] при D													
Ø 40	Ø 42	Ø 50	Ø 52	Ø 63	Ø 66	Ø 80	Ø 85	Ø 100	Ø 125	Ø 160	Ø 200	Ø 250	Ø 315
32.500		28.900		25.700									
27.700		24.600		21.800									
21.500		19.100		16.900		14.800							
16.900	16.500	14.900	14.600	13.200	12.800	11.600	11.200	10.300	9.100	8.000			

n _{max} [об/мин] при D												
Ø 2,000	Ø 2,500	Ø 3,000	Ø 4,000	Ø 5,000	Ø 6,000	Ø 8,000	Ø 10,000	Ø 12,000				
28,700	25,500											
24,400												
18,900	16,800	15,200										
14,800	13,100	11,900	10,200	9,100	8,200							

D — Инструментальная оснастка

Оснастка для неподвижного инструмента — D1

Базовые держатели	Обзор программы	246
	Антивибрационные оправки Accure-tec	247
Комплектующие для инструментальной оснастки	Обзор программы	252
	Втулки для расточных державок	253
Оснастка для вращающегося инстр	румента — D2	
Адаптеры	Обзор программы	254

Антивибрационные оправки Accure-tec

255

Обзор программы антивибрационных расточных державок Accure-tec Адаптеры

Обозначение	A3000	A3000-C	A3000-HSK-T
Тип инструмента		Оправка Accure-tec	
На станке	Цилиндрический хвостовик	Walter Capto™ по ISO 26623	HSK-T DIN 69893-7
На инструменте	QuadFit	QuadFit	QuadFit
Исполнение	Прямое	Прямое	Прямое
Стр.	247	249	250

Оправки с цилиндрическим хвостовиком — антивибрационные

A3000 mm

Accure-tec

- Для режущих головок QuadFit
- С предустановленным гашением вибраций

Инструмент	Обозначение	d ₁ мм	d ₁₁	1 ₄	l ₅	l ₁	d ₁₃	SC kg
Цилиндрический хвостовик с лыской	★ A3000-25-Q25-130	25	Q25	130	100	235	G 1/4	0,9
↓ d _{13 ↓}	★ A3000-25-Q25-180	25	Q25	180	100	285	G 1/4	1,1
d11 ===================================	A3000-32-Q32-160	32	Q32	160	128	293	G 1/4	1,8
14	A3000-32-Q32-224	32	Q32	224	128	357	G 1/4	2,3
I ₁ 15 Quadfit	A3000-40-Q40-208	40	Q40	208	160	374	G 1/4	3,8
	A3000-40-Q40-288	40	Q40	288	160	454	G 1/4	4,6
	A3000-50-Q50-268	50	Q50	268	200	475	G 1/4	7,5
	A3000-50-Q50-368	50	Q50	368	200	575	G 1/4	9,1
Цилиндрический хвостовик без лыски	★ A3000-25-Q25-230-CS	25	Q25	230	75	310	M8X1	1,7
↓ d _{13 ↓}	★ A3000-32-Q32-288-CS	32	Q32	288	98	389	M8X1	2,7
dı	A3000-40-Q40-368	40	Q40	368	160	534	G 1/4	5,5
11 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	A3000-50-Q50-468	50	Q50	468	200	675	G 1/4	11

Режущие головки QuadFit — см. главу «Токарная обработка» A3000...-CS = исполнение, усиленное твёрдым сплавом Сборочные детали входят в комплект поставки

Сборочные детали	d ₁₁	Q25	Q32	Q40	Q50
	Ключ крючковый Момент затяжки	SD9000-Q25 25 Нм	SD9000-Q32 25 Нм	SD9000-Q40 35 Нм	SD9000-Q50 55 Нм
	Переходник для подвода СОЖ для исполнения CS	CN3001-M8-G1/4	CN3001-M8-G1/4		

Комплектующие	d ₁₁	Q32	Q40	Q50
	Ключ динамометрический с крючком Момент затяжки	SD4000-Q32-25 25 Нм	SD4000-Q40-35 35 Нм	SD4000-Q50-55 55 Нм
	Крючок для динамометрического ключа	SD6000-Q32	SD6000-Q40	SD6000-Q50

Оправки с цилиндрическим хвостовиком — антивибрационные

A3000 inch

Accure-tec

- Для режущих головок QuadFit
- С предустановленным гашением вибраций

Инструмент	Обозначение	d ₁ дюйм	d ₁₁	l ₄ дюйм	l ₅ дюйм	I ₁ дюйм	d ₁₃	lbs
Цилиндрический хвостовик с лыской	★ A3000.16-Q25-133	1,000	Q25	5,250	4,000	9,430	G 1/4	4,37
⊥ d _{13 ⊥}	★ A3000.16-Q25-184	1,000	Q25	7,250	4,000	11,430	G 1/4	5,36
d ₁₁	A3000.20-Q32-165	1,250	Q32	6,500	5,000	11,713	G 1/4	3,97
1 1 1	A3000.20-Q32-229	1,250	Q32	9,000	5,000	14,213	G 1/4	5,07
I ₁	A3000.24-Q40-203	1,500	Q40	8,000	6,000	14,252	G 1/4	7,72
_	A3000.24-Q40-279	1,500	Q40	11,000	6,000	17,252	G 1/4	9,48
	A3000.32-Q50-267	2,000	Q50	10,500	8,000	18,791	G 1/4	16,76
	A3000.32-Q50-368	2,000	Q50	14,496	8,000	22,791	G 1/4	20,28
	★ A3000.16-Q25-235-CS	1,000	Q25	9,250	3,000	12,430	M8X1	8,75
↓ d ₁₃ ↓	★ A3000.20-Q32-292-CS	1,250	Q32	11,500	3,750	15,463	M8X1	13,12
d_{11}	A3000.24-Q40-356	1,500	Q40	14,000	6,000	20,252	G 1/4	11,46
14 15 15 15 15 15 15 15 15 15 15 15 15 15	A3000.32-Q50-470	2,000	Q50	18,500	8,000	26,791	G 1/4	24,69

Режущие головки QuadFit — см. главу «Токарная обработка» A3000...-CS = исполнение, усиленное твёрдым сплавом Сборочные детали входят в комплект поставки

Сборочные детали	d ₁₁	Q25	Q32	Q40	Q50
	Ключ крючковый Момент затяжки	SD9000-Q25 25 Нм	SD9000-Q32 25 Нм	SD9000-Q40 35 Нм	SD9000-Q50 55 Нм
	Переходник для подвода СОЖ для исполнения CS	CN3001-M8-G1/4	CN3001-M8-G1/4		

Комплектующие	d ₁₁	Q32	Q40	Q50
	Ключ динамометрический с крючком Момент затяжки	SD4000-Q32-25 25 Нм	SD4000-Q40-35 35 Нм	SD4000-Q50-55 55 Нм
	Крючок для динамометрического ключа	SD6000-Q32	SD6000-Q40	SD6000-Q50

Оправки Walter Capto™ — антивибрационные

A3000-C mm

Accure-tec

- Для режущих головок QuadFit
- С предустановленным гашением вибраций

Инструмент	05			d ₁₂	14	I ₁₆	l ₁₇	_	ر [kg
W-lk Ck-TM ICO 2002	Обозначение	d ₁	d ₁₁	MM	MM	MM	MM	n _{max}	ш
Walter Capto™ no ISO 26623	★ A3000-C4-Q25-130	C4	Q25	25	130	107	110	10000	0,8
↓ d ₁₂	★ A3000-C4-Q25-180	C4	Q25	25	180	157	160	8000	1
d ₁₁	★ A3000-C4-Q32-160	C4	Q32	32	160	137	140	10000	1,2
†	★ A3000-C4-Q32-224	C4	Q32	32	224	201	204	8000	1,7
I ₁₆	★ A3000-C5-Q25-130	C5	Q25	25	130	107	110	10000	0,9
	★ A3000-C5-Q25-180	C5	Q25	25	180	157	160	8000	1,1
Quadrit	★ A3000-C5-Q25-230	C5	Q25	25	230	207	210	6000	1,3
	★ A3000-C5-Q32-160	C5	Q32	32	160	136	140	10000	1,4
	★ A3000-C5-Q32-224	C5	Q32	32	224	200	204	8000	1,8
	★ A3000-C5-Q32-288	C5	Q32	32	288	264	268	6000	2,2
	★ A3000-C5-Q40-208	C5	Q40	40	208	184	188	8000	2,5
	★ A3000-C5-Q40-288	C5	Q40	40	288	264	268	6000	3,3
	★ A3000-C5-Q40-368	C5	Q40	40	368	344	348	5000	4,3
	★ A3000-C6-Q25-130	C6	Q25	25	130	102	105	10000	1,3
	★ A3000-C6-Q25-180	C6	Q25	25	180	152	155	8000	1,5
	★ A3000-C6-Q25-230	C6	Q25	25	230	202	205	6000	1,7
	A3000-C6-Q32-160	C6	Q32	32	160	129	135	10000	1,8
	A3000-C6-Q32-224	C6	Q32	32	224	193	199	8000	2,1
	A3000-C6-Q32-288	C6	Q32	32	288	257	263	6000	2,6
	A3000-C6-Q40-208	C6	Q40	40	208	177	183	8000	2,9
	A3000-C6-Q40-288	C6	Q40	40	288	257	263	6000	3,7
	A3000-C6-Q40-368	C6	Q40	40	368	337	343	5000	4,5
	A3000-C6-Q50-268	C6	Q50	50	268	238	243	6000	5
	A3000-C6-Q50-368	C6	Q50	50	368	338	343	4000	6,6
	A3000-C6-Q50-468	C6	Q50	50	468	438	443	2500	8,5
	A3000-C8-Q32-224	C8	Q32	32	224	181	191	8000	3,2
	A3000-C8-Q32-288	C8	Q32	32	288	245	255	6000	3,6
	A3000-C8-Q40-288	C8	Q40	40	288	245	255	6000	4,7
	A3000-C8-Q40-368	C8	Q40	40	368	325	335	5000	5,6
	A3000-C8-Q50-268	C8	Q50	50	268	225	235	6000	5,9
	A3000-C8-Q50-368	C8	Q50	50	368	325	335	4000	7,5
	A3000-C8-Q50-468	C8	Q50	50	468	425	435	2500	9,4
Режущие головки QuadEit — см. гла	ny "Toyanyag ofinafotya»								

Режущие головки QuadFit — см. главу «Токарная обработка» Сборочные детали входят в комплект поставки

Сборочные детали	d ₁₁	Q25	Q32	Q40	Q50
	Ключ крючковый	SD9000-Q25	SD9000-Q32	SD9000-Q40	SD9000-Q50
	Момент затяжки	25 Нм	25 Нм	35 Нм	55 Нм

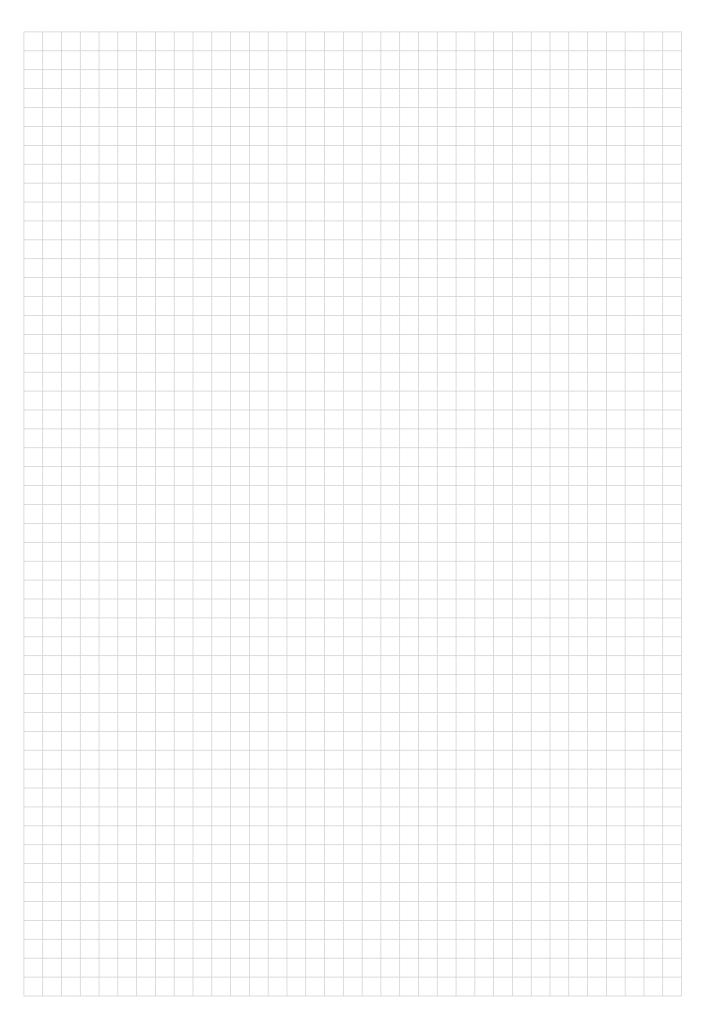
Комплектующие	d ₁₁	Q32	Q40	Q50
	Ключ динамометрический с крючком Момент затяжки	SD4000-Q32-25 25 Нм	SD4000-Q40-35 35 Нм	SD4000-Q50-55 55 Нм
	Крючок для динамометрического ключа	SD6000-Q32	SD6000-Q40	SD6000-Q50

249

Оправки HSK-T — антивибрационные

A3000-HSK-T mm

Accure-tec


- Для режущих головок QuadFit
- С предустановленным гашением вибраций

Инструмент	Обозначение	d ₁ мм	d ₁₁	d ₁₂ мм	l ₄	I ₁₆ мм	I ₁₇ мм	n _{max}	S kg
HSK-T DIN 69893-7	★ A3000-H63T-Q25-130	63	Q25	25	130	101	104	10000	1,1
,d ₁₂ a	★ A3000-H63T-Q25-180	63	Q25	25	180	151	154	8000	1,3
d ₁₁	★ A3000-H63T-Q25-230	63	Q25	25	230	201	204	6000	1,5
1	★ A3000-H63T-Q32-160	63	Q32	32	160	128	134	10000	1,6
116 - 117 -	★ A3000-H63T-Q32-224	63	Q32	32	224	192	198	8000	2
14 GuadFit	★ A3000-H63T-Q40-208	63	Q40	40	208	176	182	8000	2,7
	★ A3000-H63T-Q40-288	63	Q40	40	288	256	262	6000	3,5
	★ A3000-H63T-Q50-268	63	Q50	50	268	241	242	6000	4,8
	★ A3000-H63T-Q50-368	63	Q50	50	368	341	342	4000	6,4
	A3000-H100T-Q32-224	100	Q32	32	224	189	195	8000	3,4
	A3000-H100T-Q32-288	100	Q32	32	288	253	259	6000	3,8
	A3000-H100T-Q40-288	100	Q40	40	288	253	259	6000	4,9
	A3000-H100T-Q40-368	100	Q40	40	368	333	339	5000	5,8
	A3000-H100T-Q50-268	100	Q50	50	268	234	239	6000	6,2
	A3000-H100T-Q50-368	100	Q50	50	368	334	339	4000	7,8
	A3000-H100T-Q50-468	100	Q50	50	468	434	439	2500	9,7

Сборочные детали	d ₁₁	Q25	Q32	Q40	Q50
	Ключ крючковый	SD9000-Q25	SD9000-Q32	SD9000-Q40	SD9000-Q50
	Момент затяжки	25 Нм	25 Нм	35 Нм	55 Нм

Комплектующие	d ₁₁	Q32	Q40	Q50
	Ключ динамометрический с крючком Момент затяжки	SD4000-Q32-25 25 Нм	SD4000-Q40-35 35 Нм	SD4000-Q50-55 55 Нм
	Крючок для динамометрического ключа	SD6000-Q32	SD6000-Q40	SD6000-Q50

Обзор программы сборочных деталей и комплектующих Втулки для расточных державок

Обозначение	A2140-W
Тип инструмента	Втулки для расточных державок
На станке	Цилиндрический хвостовик с лыской
На инструменте [мм]	6–25
Стр.	253

Втулки для расточных державок

A2140-W mm

- Хвостовик Weldon по DIN 9766
- Самоцентрирование для цилиндрического хвостовика

Инструмент	Обозначение	d ₁ мм	d ₁₁ мм	I ₁ мм	1 ₄	∫2 kg
Цилиндрический хвостовик	★ A2140-W16-R06-048	16	6	48	5	0,1
с лыской по ISO 9766	★ A2140-W16-R08-048	16	8	48	5	0,1
(F	★ A2140-W16-R10-048	16	10	48	5	0,1
•	★ A2140-W16-R12-048	16	12	48	5	0,1
d_{11}	★ A2140-W20-R06-055	20	6	55	5	0,1
	★ A2140-W20-R08-055	20	8	55	5	0,1
14	★ A2140-W20-R10-055	20	10	55	5	0,1
	★ A2140-W20-R12-055	20	12	55	5	0,1
	★ A2140-W20-R16-055	20	16	55	5	0,1
	A2140-W25-R06-061	25	6	61	5	0,2
	A2140-W25-R08-061	25	8	61	5	0,2
	A2140-W25-R10-061	25	10	61	5	0,2
	A2140-W25-R12-061	25	12	61	5	0,2
	A2140-W25-R16-061	25	16	61	5	0,1
	A2140-W32-R06-065	32	6	65	5	0,3
	A2140-W32-R08-065	32	8	65	5	0,3
	A2140-W32-R10-065	32	10	65	5	0,3
	A2140-W32-R12-065	32	12	65	5	0,3
	A2140-W32-R16-065	32	16	65	5	0,3
	A2140-W32-R20-065	32	20	65	5	0,2
	A2140-W40-R06-075	40	6	75	5	0,6
	A2140-W40-R08-075	40	8	75	5	0,6
	A2140-W40-R10-075	40	10	75	5	0,6
	A2140-W40-R12-075	40	12	75	5	0,6
	A2140-W40-R16-075	40	16	75	5	0,6
	A2140-W40-R20-075	40	20	75	5	0,6
Применание саменентрирование пр	A2140-W40-R25-075	40	25	75	5	0,5

Примечание: самоцентрирование предусмотрено на всех расточных державках Walter Turn с хвостовиком круглого сечения (-R) Ø 6–25 мм. Максимальное рекомендованное давление СОЖ составляет 80 бар

Обзор программы антивибрационных оправок Accure-tec для фрез Адаптеры

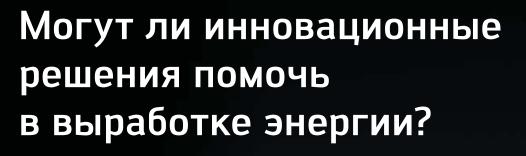
Обозначение	AC001.K	AC001.K				
Тип инструмента	Оправки Accure·tec					
На станке	ASME B 5.50	ASME B 5.50				
На инструменте	B19 / B26 / B38	B19 / B26				
Стр.	255	255				

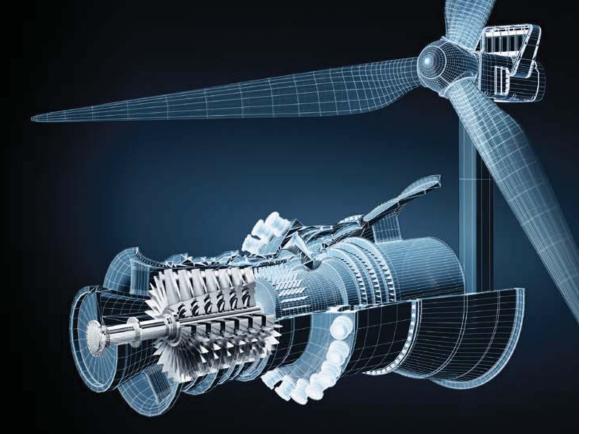
Адаптер САТ-V — антивибрационный AC001.K inch

- Для фрез с цилиндрическим отверстием по DIN 138 С предустановленным гашением вибраций

Инструмент	Обозначение	d_1	d ₁₁ дюйм	d ₁₂ дюйм	I ₄ дюйм	I ₁₉ дюйм	d ₁₃	lbs
ASME B 5.50	★ AC001.K40-B19-191	CAT40	0,750	1,750	7,500	0,690	5/8"-11	6,83
$\begin{array}{c c} \downarrow d_{11} & d_{13} \downarrow \\ \hline d_{12} & \downarrow d_{11} \\ \hline \end{array}$	★ AC001.K40-B26-229	CAT40	1,000	2,250	9,000	0,690	5/8"-11	13,01
	★ AC001.K50-B19-191	CAT50	0,750	1,750	7,500	0,690	1"-8	11,02
	★ AC001.K50-B26-229	CAT50	1,000	2,250	9,000	0,690	1"-8	17,64
119 → - 14 →	★ AC001.K50-B38-349	CAT50	1,500	3,500	13,750	0,940	1"-8	44,09

Адаптер CAT-V, конический — антивибрационный AC001.K inch


- Для фрез с цилиндрическим отверстием по DIN 138
- С предустановленным гашением вибраций

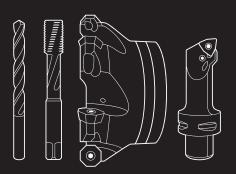

Инструмент	Обозначение	d_1	d ₁₁ дюйм	d ₁₂ дюйм	I ₄ дюйм	I ₁₆ дюйм	I ₁₉ дюйм	d ₁₃	lbs
ASME B 5.50	★ AC001.K40-B19-229	CAT40	0,750	1,750	9,000	3,125	0,690	5/8"-11	10,10
, d ₁₁	★ AC001.K50-B19-229	CAT50	0,750	1,750	9,000	3,125	0,690	1"-8	13,89
<u> </u>	★ AC001.K50-B26-305	CAT50	1,000	2,250	12,000	3,096	0,690	1"-8	24,03
d ₁₂ d ₁									
l ₁₉ → → l ₄ →									

Алфавитный указатель

Обозначение	стр.	Обозначение	стр.	Обозначение	стр.	Обозначение	стр.
Токарная об	бработка	Обработка о	тверстий	Фрезеровані	ие		
A2140-W	30	CCGT	119	ACMT	186	RDGX	194
A3000	31. 32	CPGT	119	ADMT		RDHX	
A3000-C						RDMT	
A3000-HSK-T	34	D4120.02	96, 98	BCGT	188189	RDMX	
		D4120.03	100, 102	BCGX	198	ROHX	
CCGT	16	D4120.04		BCHT	188189	ROMX	
CNGN	20	D4120.05	108, 110	BCMT	188189		
CNMG	12					SDGT	196197
CPGT	16	LCMX	93	ENMX	201	SDHX	
						SDMT	
DCGT	17	P284	92	F2239	226	SDMW	195
DNMG	13	P484	90, 91	F2239B	226	SNEX	207
DX	45, 46, 47, 48			F2339	228230	SNGX	203204205
		TCGT	120			SNMX	203204205
G4011	59, 61	TCGW	120	LNGX	201	SPMT	
G4011P	60, 62			LNHU	210		
G4014	52, 56	WOEX	94	LNHX	211212	TNMU	205
G4014P53	5, 54, 55, 57, 58	W0MX	94	LNMU	210		
G4041				LNMX	210	XDMT	198
G4041C	65					XNGX	208209
G4041C-P				M4574	232234	XNHX	
G4041P	64			M4791	224	XNMU	206
GX	48			M5130 2	16218220		
		Резьбонаре	зание	M5137	222		
QDCLN	35	T2740	420.440	MC128 1	66167174		
QDDUN	36	T2710		MC377	169		
QDWLN	37	T2711		MD128	165173		
QSCLC	38	T2712		MD377	168	Инструмен	італьная
QSDUC	39	T2713		MD838	170175	оснастка	
QSDUCX	40			MD839	171	A2140-W	253
QSDXC	41	TC216		MPMT	190	A3000	
QSTFC	42	TC420		MPMX	190	A3000	
QSVUB	43	TC430132	1, 133, 134, 133			A3000-C	
QT1820P	69			ODHT	190	AC001.K	
				ODHX	199	AC001.K	233
RPGN	22			ODMT	190		
				ONHF	202		
TCGT	17						
TCGW	20, 21			P2901	200		
TNMG	14			P2903	200		
				P2905	200		
VBGW	21			P3201	192		
VCGT	18			P3204	192		
				P23696	202		
W1011P	24, 26			P26335	191		
WL	19,			P26339	191		
WNMG	15			P26379	191		
				P45420	213		
				P45424	213		

В 2025 году на Земле будет жить более 8 миллиардов человек. Соответственно увеличится и уровень энергопотребления. Именно поэтому при выработке энергии будет востребована высочайшая эффективность! Чтобы добиться максимального КПД, необходимо оптимизировать отдельные составляющие энергетической промышленности. А значит, потребуется внедрить инновационные технологии обработки. Для этого нужен партнёр, готовый предложить эффективные инструментальные решения и надёжный сервис.

Энергетика будущего — Engineering Kompetenz от Walter.



Walter AG

Derendinger Straße 53, 72072 Tübingen Postfach 2049, 72010 Tübingen Germany

walter-tools.com

